Mitochondrial LON protease-dependent degradation of cytochrome c oxidase subunits under hypoxia and myocardial ischemia

Naresh B.V. Sepuri, Rajesh Angireddy, Satish Srinivasan, Manti Guha, Joseph Spear, Bin Lu, Hindupur K. Anandatheerthavarada, Carolyn K. Suzuki, Narayan G. Avadhani

Research output: Contribution to journalArticlepeer-review

38 Scopus citations


The mitochondrial ATP dependent matrix protease, Lon, is involved in the maintenance of mitochondrial DNA nucleoids and degradation of abnormal or misfolded proteins. The Lon protease regulates mitochondrial Tfam (mitochondrial transcription factor A) level and thus modulates mitochondrial DNA (mtDNA) content. We have previously shown that hypoxic stress induces the PKA-dependent phosphorylation of cytochrome c oxidase (CcO) subunits I, IVi1, and Vb and a time-dependent reduction of these subunits in RAW 264.7 murine macrophages subjected to hypoxia and rabbit hearts subjected to ischemia/reperfusion. Here, we show that Lon is involved in the preferential turnover of phosphorylated CcO subunits under hypoxic/ischemic stress. Induction of Lon protease occurs at 6 to 12 h of hypoxia and this increase coincides with lower CcO subunit contents. Over-expression of flag-tagged wild type and phosphorylation site mutant Vb and IVi1 subunits (S40A and T52A, respectively) caused marked degradation of wild type protein under hypoxia while the mutant proteins were relatively resistant. Furthermore, the recombinant purified Lon protease degraded the phosphorylated IVi1 and Vb subunits, while the phosphorylation-site mutant proteins were resistant to degradation. 3D structural modeling shows that the phosphorylation sites are exposed to the matrix compartment, accessible to matrix PKA and Lon protease. Hypoxic stress did not alter CcO subunit levels in Lon depleted cells, confirming its role in CcO turnover. Our results therefore suggest that Lon preferentially degrades the phosphorylated subunits of CcO and plays a role in the regulation of CcO activity in hypoxia and ischemia/reperfusion injury.

Original languageEnglish (US)
Pages (from-to)519-528
Number of pages10
JournalBiochimica et Biophysica Acta - Bioenergetics
Issue number7
StatePublished - Jul 1 2017

All Science Journal Classification (ASJC) codes

  • Biophysics
  • Biochemistry
  • Cell Biology


  • 3D modeling
  • CcO subunits
  • Heart ischemia
  • Hypoxia
  • Mitochondrial LON
  • PKA dependent phosphorylation


Dive into the research topics of 'Mitochondrial LON protease-dependent degradation of cytochrome c oxidase subunits under hypoxia and myocardial ischemia'. Together they form a unique fingerprint.

Cite this