Modeling of Geographic Dependencies for Real Estate Ranking on Site Selection

Yanjie Fu, Hui Xiong

Research output: Chapter in Book/Report/Conference proceedingConference contribution

3 Scopus citations

Abstract

With the development of new ways of collecting estate-related mobile data, there is a potential to leverage geographic dependencies of estates for enhancing estate appraisal. Indeed, the geographic dependencies of the investment value of an estate can be from the characteristics of its own neighborhood (individual), the values of its nearby estates (peer), and the prosperity of the affiliated latent business area (zone). To this end, in this dissertation, we propose a geographic method, named ClusRanking, for estate appraisal by leveraging the mutual enforcement of ranking and clustering power. ClusRanking is able to exploit geographic individual, peer, and zone dependencies in a probabilistic ranking model. Specifically, we first extract the geographic utility of estates from geography data, estimate the neighborhood popularity of estates by mining taxicab trajectory data, and model the influence of latent business areas. Also, we fuse these three influential factors and predict real estate investment value. Moreover, we simultaneously consider individual, peer and zone dependencies, and derive an estate-specific ranking likelihood as the objective function. Furthermore, we propose an improved method named CR-ClusRanking by incorporating checkin information as a regularization term which reduces the performance volatility of estate ranking system. Finally, we conduct a comprehensive evaluation with the real estate related data of Beijing, and the experimental results demonstrate the effectiveness of our proposed methods.

Original languageEnglish (US)
Title of host publicationProceedings - 15th IEEE International Conference on Data Mining Workshop, ICDMW 2015
EditorsXindong Wu, Alexander Tuzhilin, Hui Xiong, Jennifer G. Dy, Charu Aggarwal, Zhi-Hua Zhou, Peng Cui
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages1506-1513
Number of pages8
ISBN (Electronic)9781467384926
DOIs
StatePublished - Jan 29 2016
Event15th IEEE International Conference on Data Mining Workshop, ICDMW 2015 - Atlantic City, United States
Duration: Nov 14 2015Nov 17 2015

Publication series

NameProceedings - 15th IEEE International Conference on Data Mining Workshop, ICDMW 2015

Other

Other15th IEEE International Conference on Data Mining Workshop, ICDMW 2015
Country/TerritoryUnited States
CityAtlantic City
Period11/14/1511/17/15

All Science Journal Classification (ASJC) codes

  • Electrical and Electronic Engineering
  • Computer Science Applications

Fingerprint

Dive into the research topics of 'Modeling of Geographic Dependencies for Real Estate Ranking on Site Selection'. Together they form a unique fingerprint.

Cite this