TY - GEN
T1 - Modeling of Geographic Dependencies for Real Estate Ranking on Site Selection
AU - Fu, Yanjie
AU - Xiong, Hui
N1 - Publisher Copyright:
© 2015 IEEE.
PY - 2016/1/29
Y1 - 2016/1/29
N2 - With the development of new ways of collecting estate-related mobile data, there is a potential to leverage geographic dependencies of estates for enhancing estate appraisal. Indeed, the geographic dependencies of the investment value of an estate can be from the characteristics of its own neighborhood (individual), the values of its nearby estates (peer), and the prosperity of the affiliated latent business area (zone). To this end, in this dissertation, we propose a geographic method, named ClusRanking, for estate appraisal by leveraging the mutual enforcement of ranking and clustering power. ClusRanking is able to exploit geographic individual, peer, and zone dependencies in a probabilistic ranking model. Specifically, we first extract the geographic utility of estates from geography data, estimate the neighborhood popularity of estates by mining taxicab trajectory data, and model the influence of latent business areas. Also, we fuse these three influential factors and predict real estate investment value. Moreover, we simultaneously consider individual, peer and zone dependencies, and derive an estate-specific ranking likelihood as the objective function. Furthermore, we propose an improved method named CR-ClusRanking by incorporating checkin information as a regularization term which reduces the performance volatility of estate ranking system. Finally, we conduct a comprehensive evaluation with the real estate related data of Beijing, and the experimental results demonstrate the effectiveness of our proposed methods.
AB - With the development of new ways of collecting estate-related mobile data, there is a potential to leverage geographic dependencies of estates for enhancing estate appraisal. Indeed, the geographic dependencies of the investment value of an estate can be from the characteristics of its own neighborhood (individual), the values of its nearby estates (peer), and the prosperity of the affiliated latent business area (zone). To this end, in this dissertation, we propose a geographic method, named ClusRanking, for estate appraisal by leveraging the mutual enforcement of ranking and clustering power. ClusRanking is able to exploit geographic individual, peer, and zone dependencies in a probabilistic ranking model. Specifically, we first extract the geographic utility of estates from geography data, estimate the neighborhood popularity of estates by mining taxicab trajectory data, and model the influence of latent business areas. Also, we fuse these three influential factors and predict real estate investment value. Moreover, we simultaneously consider individual, peer and zone dependencies, and derive an estate-specific ranking likelihood as the objective function. Furthermore, we propose an improved method named CR-ClusRanking by incorporating checkin information as a regularization term which reduces the performance volatility of estate ranking system. Finally, we conduct a comprehensive evaluation with the real estate related data of Beijing, and the experimental results demonstrate the effectiveness of our proposed methods.
UR - http://www.scopus.com/inward/record.url?scp=84964786215&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84964786215&partnerID=8YFLogxK
U2 - 10.1109/ICDMW.2015.83
DO - 10.1109/ICDMW.2015.83
M3 - Conference contribution
AN - SCOPUS:84964786215
T3 - Proceedings - 15th IEEE International Conference on Data Mining Workshop, ICDMW 2015
SP - 1506
EP - 1513
BT - Proceedings - 15th IEEE International Conference on Data Mining Workshop, ICDMW 2015
A2 - Wu, Xindong
A2 - Tuzhilin, Alexander
A2 - Xiong, Hui
A2 - Dy, Jennifer G.
A2 - Aggarwal, Charu
A2 - Zhou, Zhi-Hua
A2 - Cui, Peng
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 15th IEEE International Conference on Data Mining Workshop, ICDMW 2015
Y2 - 14 November 2015 through 17 November 2015
ER -