Modeling of ultrashort pulse laser ablation in water

Jian Jiao, Zhixiong Guo, Kunal Mitra

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

A numerical model combining the ultrafast radiative heat transfer and ablation rate equation for free electron density is proposed to investigate the transient process of plasma formation in distilled water. The focused beam propagation governed by the transient equation of radiative heat transfer is solved by the transient discrete ordinates method. The temporal evolution of free electron density governed by the rate equation is solved using a forth-order Runge-Kutta method. Two laser pulses: 30 ps and 300 fs are considered. Simulation of the dynamics of plasma formation is performed. The results include the threshold laser intensity for optical breakdown, temporal evolution and spatial distribution of the free electron density as well as the maximum plasma length. To validate the model, optical breakdown thresholds for different laser pulses, the shape of plasma breakdown region and the maximum plasma length predicted by the present model are also compared with the experimental data.

Original languageEnglish (US)
Title of host publicationProceedings of the ASME International Mechanical Engineering Congress and Exposition 2009, IMECE 2009
PublisherAmerican Society of Mechanical Engineers (ASME)
Pages493-500
Number of pages8
EditionPART A
ISBN (Print)9780791843826
DOIs
StatePublished - 2010
EventASME 2009 International Mechanical Engineering Congress and Exposition, IMECE2009 - Lake Buena Vista, FL, United States
Duration: Nov 13 2009Nov 19 2009

Publication series

NameASME International Mechanical Engineering Congress and Exposition, Proceedings
NumberPART A
Volume9

Other

OtherASME 2009 International Mechanical Engineering Congress and Exposition, IMECE2009
Country/TerritoryUnited States
CityLake Buena Vista, FL
Period11/13/0911/19/09

All Science Journal Classification (ASJC) codes

  • Mechanical Engineering

Fingerprint

Dive into the research topics of 'Modeling of ultrashort pulse laser ablation in water'. Together they form a unique fingerprint.

Cite this