Molecular dynamics simulation of heat conduction in Si thin films induced by ultrafast laser heating

Yu Zou, Xiulan Huai, Fang Xin, Zhixiong Guo

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Molecular dynamics simulations are carried out to study the thermal and mechanical phenomena of ultra-high heat flux conduction induced by ultrafast laser heating in thin Si films. Nanoscale Si films with various depths in heat flux direction are treated as a semi-infinite model for the study of ultrafast heat conduction. A distribution of internal heat source is applied to simulate the absorption of the laser energy in films and the induced temperature distribution. Stress distribution and the evolution of the displacement are calculated. Thermal waves are observed from the development of temperature distribution in the heat flux direction, though the average temperature of the simulated Si films increases monotonically. The average stress shows periodic oscillations. The time development of strain has the same trend as the average stress, and the net heat flux shows the same trend as the stress at different depths of the Si films in the direction of heat flux. This reveals a close relationship between stress and net heat flux in the Si films in the process of ultrafast laser heating.

Original languageEnglish (US)
Title of host publicationASME 2012 Heat Transfer Summer Conf. Collocated with the ASME 2012 Fluids Engineering Div. Summer Meeting and the ASME 2012 10th Int. Conf. on Nanochannels, Microchannels and Minichannels, HT 2012
Pages827-835
Number of pages9
DOIs
StatePublished - 2012
EventASME 2012 Heat Transfer Summer Conference Collocated with the ASME 2012 Fluids Engineering Div. Summer Meeting and the ASME 2012 10th Int. Conf. on Nanochannels, Microchannels and Minichannels, HT 2012 - Rio Grande, Puerto Rico
Duration: Jul 8 2012Jul 12 2012

Publication series

NameASME 2012 Heat Transfer Summer Conf. Collocated with the ASME 2012 Fluids Engineering Div. Summer Meeting and the ASME 2012 10th Int. Conf. on Nanochannels, Microchannels and Minichannels, HT 2012
Volume2

Other

OtherASME 2012 Heat Transfer Summer Conference Collocated with the ASME 2012 Fluids Engineering Div. Summer Meeting and the ASME 2012 10th Int. Conf. on Nanochannels, Microchannels and Minichannels, HT 2012
CountryPuerto Rico
CityRio Grande
Period7/8/127/12/12

All Science Journal Classification (ASJC) codes

  • Fluid Flow and Transfer Processes
  • Control and Systems Engineering
  • Electrical and Electronic Engineering
  • Mechanical Engineering
  • Condensed Matter Physics

Keywords

  • Heat conduction
  • Molecular dynamics simulation
  • Si thin films
  • Ultrafast laser heating

Fingerprint Dive into the research topics of 'Molecular dynamics simulation of heat conduction in Si thin films induced by ultrafast laser heating'. Together they form a unique fingerprint.

Cite this