Molecular insights into the structure-function relationship of organic anion transporters OATs

Fanfan Zhou, Guofeng You

Research output: Contribution to journalReview articlepeer-review

71 Scopus citations

Abstract

The organic anion transporter (OAT) family encoded by SLC22A mediates the absorption, distribution, and excretion of a diverse array of environmental toxins, and clinically important drugs, including anti-HIV therapeutics, anti-tumor drugs, antibiotics, anti-hypertensives, and anti-inflammatories, and therefore is critical for the survival of mammalian species. Several OATs have been identified: OAT1 (SLC22A6), OAT2 (SLC22A7), OAT3 (SLC22A8), OAT4 (SLC22A11), OAT5 (SLC22A19) OAT6 (SLC22A20) and URAT1 (SLC22A12). The expressions of these OATs have been detected in key organs such as kidney, liver, brain and placenta. OAT dysfunction in these organs may contribute to the renal, hepatic, neurological and fetal toxicity and diseases. In this review, we summarize, according to the work done by our laboratory as well as by others, the most updated molecular studies on these OAT members, especially on the aspect of their structure-function relationships. The functional roles of N-glycosylation, transmembrane domains and individual amino acids, cell surface assembly, as well as associating proteins will be discussed. In addition, we will show the recent analyses of coding region polymorphisms of OATs, which give us information on the genetic variants of OATs and their potential effects on OAT functions.

Original languageEnglish (US)
Pages (from-to)28-36
Number of pages9
JournalPharmaceutical research
Volume24
Issue number1
DOIs
StatePublished - Jan 2007

All Science Journal Classification (ASJC) codes

  • Biotechnology
  • Molecular Medicine
  • Pharmacology
  • Pharmaceutical Science
  • Organic Chemistry
  • Pharmacology (medical)

Keywords

  • Drug transporter
  • Structure-function relationship

Fingerprint

Dive into the research topics of 'Molecular insights into the structure-function relationship of organic anion transporters OATs'. Together they form a unique fingerprint.

Cite this