Molecular Tension Probes to Investigate the Mechanopharmacology of Single Cells: A Step toward Personalized Mechanomedicine

Kornelia Galior, Victor Pui Yan Ma, Yang Liu, Hanquan Su, Nusaiba Baker, Reynold A. Panettieri, Cherry Wongtrakool, Khalid Salaita

Research output: Contribution to journalArticlepeer-review

12 Scopus citations


Given that dysregulation of mechanics contributes to diseases ranging from cancer metastasis to lung disease, it is important to develop methods for screening the efficacy of drugs that target cellular forces. Here, nanoparticle-based tension sensors are used to quantify the mechanical response of individual cells upon drug treatment. As a proof-of-concept, the activity of bronchodilators is tested on human airway smooth muscle cells derived from seven donors, four of which are asthmatic. It is revealed that airway smooth muscle cells isolated from asthmatic donors exhibit greater traction forces compared to the control donors. Additionally, the mechanical signal is abolished using myosin inhibitors or further enhanced in the presence of inflammatory inducers, such as nicotine. Using the signal generated by the probes, single-cell dose-response measurements are performed to determine the “mechano” effective concentration (mechano-EC50) of albuterol, a bronchodilator, which reduces integrin forces by 50%. Mechano-EC50 values for each donor present discrete readings that are differentially enhanced as a function of nicotine treatment. Importantly, donor mechano-EC50 values varied by orders of magnitude, suggesting significant variability in their sensitivity to nicotine and albuterol treatment. To the best of the authors’ knowledge, this is the first study harnessing a piconewton tension sensor platform for mechanopharmacology.

Original languageEnglish (US)
Article number1800069
JournalAdvanced Healthcare Materials
Issue number14
StatePublished - Jul 25 2018

All Science Journal Classification (ASJC) codes

  • Biomaterials
  • Biomedical Engineering
  • Pharmaceutical Science


  • airway smooth muscle cells
  • integrins
  • mechanopharmacology
  • molecular tension sensors


Dive into the research topics of 'Molecular Tension Probes to Investigate the Mechanopharmacology of Single Cells: A Step toward Personalized Mechanomedicine'. Together they form a unique fingerprint.

Cite this