Monotonicity of algebraic lyapunov iterations for optimal control of jump parameter linear systems

Zoran Gajic, Ricardo Losada

Research output: Chapter in Book/Report/Conference proceedingConference contribution

20 Scopus citations

Abstract

In this paper we show that the sequences of the solutions of the decoupled algebraic Lyapunov equations used for finding the positive semidefinite stabilizing solutions of the coupled algebraic Riccati equations of the optimal control problem of jump parameter linear systems are monotonic under proper initialization.

Original languageEnglish (US)
Title of host publicationProceedings of the 1998 American Control Conference, ACC 1998
Pages744-745
Number of pages2
DOIs
StatePublished - 1998
Event1998 American Control Conference, ACC 1998 - Philadelphia, PA, United States
Duration: Jun 24 1998Jun 26 1998

Publication series

NameProceedings of the American Control Conference
Volume2
ISSN (Print)0743-1619

Other

Other1998 American Control Conference, ACC 1998
Country/TerritoryUnited States
CityPhiladelphia, PA
Period6/24/986/26/98

All Science Journal Classification (ASJC) codes

  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Monotonicity of algebraic lyapunov iterations for optimal control of jump parameter linear systems'. Together they form a unique fingerprint.

Cite this