Multi-Feature Semi-Supervised Learning for COVID-19 Diagnosis from Chest X-Ray Images

Xiao Qi, David J. Foran, John L. Nosher, Ilker Hacihaliloglu

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Computed tomography (CT) and chest X-ray (CXR) have been the two dominant imaging modalities deployed for improved management of Coronavirus disease 2019 (COVID-19). Due to faster imaging, less radiation exposure, and being cost-effective CXR is preferred over CT. However, the interpretation of CXR images, compared to CT, is more challenging due to low image resolution and COVID-19 image features being similar to regular pneumonia. Computer-aided diagnosis via deep learning has been investigated to help mitigate these problems and help clinicians during the decision-making process. The requirement for a large amount of labeled data is one of the major problems of deep learning methods when deployed in the medical domain. To provide a solution to this, in this work, we propose a semi-supervised learning (SSL) approach using minimal data for training. We integrate local-phase CXR image features into a multi-feature convolutional neural network architecture where the training of SSL method is obtained with a teacher/student paradigm. Quantitative evaluation is performed on 8,851 normal (healthy), 6,045 pneumonia, and 3,795 COVID-19 CXR scans. By only using 7.06% labeled and 16.48% unlabeled data for training, 5.53% for validation, our method achieves 93.61% mean accuracy on a large-scale (70.93%) test data. We provide comparison results against fully supervised and SSL methods. The code and dataset will be made available after acceptance.

Original languageEnglish (US)
Title of host publicationMachine Learning in Medical Imaging - 12th International Workshop, MLMI 2021, Held in Conjunction with MICCAI 2021, Proceedings
EditorsChunfeng Lian, Xiaohuan Cao, Islem Rekik, Xuanang Xu, Pingkun Yan
PublisherSpringer Science and Business Media Deutschland GmbH
Pages151-160
Number of pages10
ISBN (Print)9783030875886
DOIs
StatePublished - 2021
Event12th International Workshop on Machine Learning in Medical Imaging, MLMI 2021, held in conjunction with 24th International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2021 - Virtual, Online
Duration: Sep 27 2021Sep 27 2021

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume12966 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference12th International Workshop on Machine Learning in Medical Imaging, MLMI 2021, held in conjunction with 24th International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2021
CityVirtual, Online
Period9/27/219/27/21

All Science Journal Classification (ASJC) codes

  • Theoretical Computer Science
  • Computer Science(all)

Keywords

  • Chest X-ray
  • Classification
  • COVID-19
  • Semi-supervised learning

Fingerprint

Dive into the research topics of 'Multi-Feature Semi-Supervised Learning for COVID-19 Diagnosis from Chest X-Ray Images'. Together they form a unique fingerprint.

Cite this