Multiple pools of PP2A regulate spindle assembly, kinetochore attachments and cohesion in Drosophila oocytes

Janet K. Jang, Amy C. Gladstein, Arunika Das, Joanatta G. Shapiro, Zachary L. Sisco, Kim S. McKim

Research output: Contribution to journalArticlepeer-review

6 Scopus citations

Abstract

Meiosis in female oocytes lacks centrosomes, the microtubule-organizing centers. In Drosophila oocytes, meiotic spindle assembly depends on the chromosomal passenger complex (CPC). To investigate the mechanisms that regulate Aurora B activity, we examined the role of protein phosphatase 2A (PP2A) in Drosophila oocyte meiosis. We found that both forms of PP2A, B55 and B56, antagonize the Aurora B spindle assembly function, suggesting that a balance between Aurora B and PP2A activity maintains the oocyte spindle during meiosis I. PP2A-B56, which has a B subunit encoded by two partially redundant paralogs, wdb and wrd, is also required for maintenance of sister chromatid cohesion, establishment of end-on microtubule attachments, and metaphase I arrest in oocytes. WDB recruitment to the centromeres depends on BUBR1, MEI-S332 and kinetochore protein SPC105R. Although BUBR1 stabilizes microtubule attachments in Drosophila oocytes, it is not required for cohesion maintenance during meiosis I. We propose at least three populations of PP2A-B56 regulate meiosis, two of which depend on SPC105R and a third that is associated with the spindle.

Original languageEnglish (US)
Article numberjcs254037
JournalJournal of cell science
Volume134
Issue number14
DOIs
StatePublished - Jul 2021

All Science Journal Classification (ASJC) codes

  • Cell Biology

Keywords

  • Chromosome segregation
  • Drosophila
  • Kinetochore
  • Meiosis
  • Microtubule
  • Oocyte

Fingerprint

Dive into the research topics of 'Multiple pools of PP2A regulate spindle assembly, kinetochore attachments and cohesion in Drosophila oocytes'. Together they form a unique fingerprint.

Cite this