n-type charge transport in heavily p-doped polymers

Zhiming Liang, Hyun Ho Choi, Xuyi Luo, Tuo Liu, Ashkan Abtahi, Uma Shantini Ramasamy, J. Andrew Hitron, Kyle N. Baustert, Jacob L. Hempel, Alex M. Boehm, Armin Ansary, Douglas R. Strachan, Jianguo Mei, Chad Risko, Vitaly Podzorov, Kenneth R. Graham

Research output: Contribution to journalArticlepeer-review

6 Scopus citations


It is commonly assumed that charge-carrier transport in doped π-conjugated polymers is dominated by one type of charge carrier, either holes or electrons, as determined by the chemistry of the dopant. Here, through Seebeck coefficient and Hall effect measurements, we show that mobile electrons contribute substantially to charge-carrier transport in π-conjugated polymers that are heavily p-doped with strong electron acceptors. Specifically, the Seebeck coefficient of several p-doped polymers changes sign from positive to negative as the concentration of the oxidizing agents FeCl3 or NOBF4 increase, and Hall effect measurements for the same p-doped polymers reveal that electrons become the dominant delocalized charge carriers. Ultraviolet and inverse photoelectron spectroscopy measurements show that doping with oxidizing agents results in elimination of the transport gap at high doping concentrations. This approach of heavy p-type doping is demonstrated to provide a promising route to high-performance n-type organic thermoelectric materials.

Original languageEnglish (US)
Pages (from-to)518-524
Number of pages7
JournalNature materials
Issue number4
StatePublished - Apr 2021

All Science Journal Classification (ASJC) codes

  • Chemistry(all)
  • Materials Science(all)
  • Condensed Matter Physics
  • Mechanics of Materials
  • Mechanical Engineering


Dive into the research topics of 'n-type charge transport in heavily p-doped polymers'. Together they form a unique fingerprint.

Cite this