Abstract
The present study was undertaken to identify functional isoforms of the Na,K-ATPase in single rat cardiac myocytes. Na,K-ATPase activity was measured as ouabain-sensitive, extracellu[ar K-activated outward current (Na pump current) in ventricular myocytes voltage-clamped with single low-resistance (0.5-1 MΩ) patch electrodes at 36°C. Solutions to block contaminating currents allowed Na pump current to be measured without significant contamination in 140 mM Na-containing superfusion solutions. The current-voltage relationship had a positive slope at potentials from -125 to 0 mV but became almost voltage-independent at positive potentials. The apparent K(m) for activation of this current at -40mV by extracellular K was 2.7 ± 0.3 mM (mean ± SEM, n =3) and increasing electrode Na increased the amplitude of the current to a maximum density of 4.11 ± 0.17 pA/pF (n = 34). Intracellular vanadate (100 μM) produced an extracellular K-dependent inhibition of Na pump current that was rapidly reversed in K-free superfusion solution. Dose-dependent inhibition of Na pump current by ouabain was best described as the sum of two Michaelis-Menten binding sites: one with higher affinity (K( 1/4 ) = 1.0 ± 0.7 μM) comprising 33 ± 9% (n = 5-6) of the total current and the second with a K( 1/4 ) of 43 ± 14 μM. Changing electrode [Na] from 15 to 100 mM had no effect on the dose-dependent inhibition of the current by ouabain. Thus, the properties of high and low affinity components of Na pump current are consistent with the presence of different Na,K-ATPases isoforms that have a similar ion dependence for transport activity.
Original language | English (US) |
---|---|
Pages (from-to) | 215-223 |
Number of pages | 9 |
Journal | Japanese Journal of Physiology |
Volume | 46 |
Issue number | 3 |
DOIs | |
State | Published - Jun 1996 |
Externally published | Yes |
All Science Journal Classification (ASJC) codes
- Physiology
Keywords
- Heart
- Isoforms
- Na,K-ATPase
- Ouabain
- Rat
- Vanadate