NCAM regulates temporal specification of neural progenitor cells via profilin2 during corticogenesis

Rui Huang, De Juan Yuan, Shao Li, Xue Song Liang, Yue Gao, Xiao Yan Lan, Hua Min Qin, Yu Fang Ma, Guang Yin Xu, Melitta Schachner, Vladimir Sytnyk, Johannes Boltze, Quan Hong Ma, Shen Li

Research output: Contribution to journalArticlepeer-review

15 Scopus citations

Abstract

The development of cerebral cortex requires spatially and temporally orchestrated proliferation, migration, and differentiation of neural progenitor cells (NPCs). The molecular mechanisms underlying cortical development are, however, not fully understood. The neural cell adhesion molecule (NCAM) has been suggested to play a role in corticogenesis. Here we show that NCAM is dynamically expressed in the developing cortex. NCAM expression in NPCs is highest in the neurogenic period and declines during the gliogenic period. In mice bearing an NPC-specific NCAM deletion, proliferation of NPCs is reduced, and production of cortical neurons is delayed, while formation of cortical glia is advanced. Mechanistically, NCAM enhances actin polymerization in NPCs by interacting with actin-associated protein profilin2. NCAM-dependent regulation of NPCs is blocked by mutations in the profilin2 binding site. Thus, NCAM plays an essential role in NPC proliferation and fate decision during cortical development by regulating profilin2-dependent actin polymerization.

Original languageEnglish (US)
JournalThe Journal of cell biology
Volume219
Issue number1
DOIs
StatePublished - Jan 6 2020

All Science Journal Classification (ASJC) codes

  • Cell Biology

Fingerprint

Dive into the research topics of 'NCAM regulates temporal specification of neural progenitor cells via profilin2 during corticogenesis'. Together they form a unique fingerprint.

Cite this