Negative group delay enabled artificial transmission line exhibiting squint-free, dominant mode, backward leaky-wave radiation

Research output: Chapter in Book/Report/Conference proceedingConference contribution

5 Scopus citations

Abstract

A dispersion-engineered artificial transmission line (TL) enabled by negative group delay (NGD) is proposed to exhibit squint-free dominant mode leaky-wave radiation. The unit cell of the proposed artificial TL is based on a multi-section directional coupler, which is used to generate the desired NGD, followed by a composite right/left-handed transmission line (CRLH-TL) structure. An amplifier is incorporated within each unit cell to compensate for the power loss from the NGD coupler. By incorporating the NGD response, the resulting artificial TL can demonstrate a dispersionless fast wave characteristic within the NGD frequency band. For proof-of-concept, prototypes of a single unit cell and a three-unit cell NGD artificial TL are fabricated and tested to verify the dispersion and radiation characteristics. The measured radiation patterns of the proposed NGD artificial TL indicate that the main beam angle is located at -35 degrees in the backward direction, with a squint-free bandwidth from 2.55 GHz to 2.75 GHz.

Original languageEnglish (US)
Title of host publicationIMS 2020 - 2020 IEEE/MTT-S International Microwave Symposium
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages309-312
Number of pages4
ISBN (Electronic)9781728168159
DOIs
StatePublished - Aug 2020
Externally publishedYes
Event2020 IEEE/MTT-S International Microwave Symposium, IMS 2020 - Virtual, Los Angeles, United States
Duration: Aug 4 2020Aug 6 2020

Publication series

NameIEEE MTT-S International Microwave Symposium Digest
Volume2020-August
ISSN (Print)0149-645X

Conference

Conference2020 IEEE/MTT-S International Microwave Symposium, IMS 2020
Country/TerritoryUnited States
CityVirtual, Los Angeles
Period8/4/208/6/20

All Science Journal Classification (ASJC) codes

  • Radiation
  • Condensed Matter Physics
  • Electrical and Electronic Engineering

Keywords

  • Artificial transmission line
  • Composite right/left-handed (CRLH)
  • Leaky-wave antenna (L W A)
  • Negative group delay (NGD)
  • Squint-free radiation

Fingerprint

Dive into the research topics of 'Negative group delay enabled artificial transmission line exhibiting squint-free, dominant mode, backward leaky-wave radiation'. Together they form a unique fingerprint.

Cite this