New evidence of the marginal predictive content of small and large jumps in the cross-section

Research output: Contribution to journalArticlepeer-review

Abstract

We investigate the marginal predictive content of small versus large jump variation, when forecasting one-week-ahead cross-sectional equity returns, building on Bollerslev et al. (2020). We find that sorting on signed small jump variation leads to greater value-weighted return differentials between stocks in our highest-and lowest-quintile portfolios (i.e., high–low spreads) than when either signed total jump or signed large jump variation is sorted on. It is shown that the benefit of signed small jump variation investing is driven by stock selection within an industry, rather than industry bets. Investors prefer stocks with a high probability of having positive jumps, but they also tend to overweight safer industries. Also, consistent with the findings in Scaillet et al. (2018), upside (downside) jump variation negatively (positively) predicts future returns. However, signed (large/small/total) jump variation has stronger predictive power than both upside and downside jump variation. One reason large and small (signed) jump variation have differing marginal predictive contents is that the predictive content of signed large jump variation is negligible when controlling for either signed total jump variation or realized skewness. By contrast, signed small jump variation has unique information for predicting future returns, even when controlling for these variables. By analyzing earnings announcement surprises, we find that large jumps are closely associated with “big” news. However, while such news-related information is embedded in large jump variation, the information is generally short-lived, and dissipates too quickly to provide marginal predictive content for subsequent weekly returns. Finally, we find that small jumps are more likely to be diversified away than large jumps and tend to be more closely associated with idiosyncratic risks. This indicates that small jumps are more likely to be driven by liquidity conditions and trading activity.

Original languageEnglish (US)
Article number19
JournalEconometrics
Volume8
Issue number2
DOIs
StatePublished - Jun 2020

All Science Journal Classification (ASJC) codes

  • Economics and Econometrics

Keywords

  • Cross-sectional stock returns
  • Forecasting
  • High-frequency data
  • Integrated volatility
  • Jumps
  • Realized skewness
  • Signed jump variation

Fingerprint Dive into the research topics of 'New evidence of the marginal predictive content of small and large jumps in the cross-section'. Together they form a unique fingerprint.

Cite this