Noise thresholds for spectral clustering

Sivaraman Balakrishnan, Min Xu, Akshay Krishnamurthy, Aarti Singh

Research output: Chapter in Book/Report/Conference proceedingConference contribution

63 Scopus citations

Abstract

Although spectral clustering has enjoyed considerable empirical success in machine learning, its theoretical properties are not yet fully developed. We analyze the performance of a spectral algorithm for hierarchical clustering and show that on a class of hierarchically structured similarity matrices, this algorithm can tolerate noise that grows with the number of data points while still perfectly recovering the hierarchical clusters with high probability. We additionally improve upon previous results for k-way spectral clustering to derive conditions under which spectral clustering makes no mistakes. Further, using minimax analysis, we derive tight upper and lower bounds for the clustering problem and compare the performance of spectral clustering to these information theoretic limits. We also present experiments on simulated and real world data illustrating our results.

Original languageEnglish (US)
Title of host publicationAdvances in Neural Information Processing Systems 24
Subtitle of host publication25th Annual Conference on Neural Information Processing Systems 2011, NIPS 2011
PublisherNeural Information Processing Systems
ISBN (Print)9781618395993
StatePublished - 2011
Externally publishedYes
Event25th Annual Conference on Neural Information Processing Systems 2011, NIPS 2011 - Granada, Spain
Duration: Dec 12 2011Dec 14 2011

Publication series

NameAdvances in Neural Information Processing Systems 24: 25th Annual Conference on Neural Information Processing Systems 2011, NIPS 2011

Other

Other25th Annual Conference on Neural Information Processing Systems 2011, NIPS 2011
Country/TerritorySpain
CityGranada
Period12/12/1112/14/11

All Science Journal Classification (ASJC) codes

  • Information Systems

Fingerprint

Dive into the research topics of 'Noise thresholds for spectral clustering'. Together they form a unique fingerprint.

Cite this