Non-allelic gene conversion enables rapid evolutionary change at multiple regulatory sites encoded by transposable elements

Christopher E. Ellison, Doris Bachtrog

Research output: Contribution to journalArticlepeer-review

18 Scopus citations

Abstract

Transposable elements (TEs) allow rewiring of regulatory networks, and the recent amplification of the ISX-element dispersed 77 functional but suboptimal binding-sites for the dosage-compensation-complex to a newly-formed X-chromosome in Drosophila. Here we identify two linked refining-mutations within ISX that interact epistatically to increase binding affinity to the dosage-compensation-complex. Selection has increased the frequency of this derived haplotype in the population, which is fixed at 30% of ISX-insertions and polymorphic among another 41%. Sharing of this haplotype indicates that high levels of gene-conversion among ISX-elements allow them to 'crowd-source' refining-mutations, and a refining-mutation that occurs at any single ISX-element can spread in two dimensions: horizontally across insertion sites by non-allelic gene-conversion, and vertically through the population by natural selection. These describes a novel route how fully functional regulatory elements can arise rapidly from TEs and implicate non-allelic gene-conversion as having an important role in accelerating the evolutionary fine-tuning of regulatory networks.

Original languageEnglish (US)
Article numbere05899
JournaleLife
Volume2015
Issue number4
DOIs
StatePublished - Feb 17 2015
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Neuroscience(all)
  • Immunology and Microbiology(all)
  • Biochemistry, Genetics and Molecular Biology(all)

Fingerprint Dive into the research topics of 'Non-allelic gene conversion enables rapid evolutionary change at multiple regulatory sites encoded by transposable elements'. Together they form a unique fingerprint.

Cite this