Abstract
The concept of non-ergodicity in quantum many body systems can be discussed in the context of the wave functions of the many body system or as a property of the dynamical observables, such as time-dependent spin correlators. In the former approach the non-ergodic delocalized state is defined as the one in which the wave functions occupy a volume that scales as a non-trivial power of the full phase space. In this work we study the simplest spin glass model and find that in the delocalized non-ergodic regime the spin–spin correlators decay with the characteristic time that scales as non-trivial power of the full Hilbert space volume. The long time limit of this correlator also scales as a power of the full Hilbert space volume. We identify this phase with the glass phase whilst the many body localized phase corresponds to a ’hyperglass’ in which dynamics is practically absent. We discuss the implications of these findings to quantum information problems.
Original language | English (US) |
---|---|
Article number | 167916 |
Journal | Annals of Physics |
Volume | 409 |
DOIs | |
State | Published - Oct 2019 |
All Science Journal Classification (ASJC) codes
- General Physics and Astronomy
Keywords
- Many body localization
- Non-ergodicity
- Quantum spin glass