Norm varieties and the chain lemma

Christian Haesemeyer, Chuck Weibel

Research output: Chapter in Book/Report/Conference proceedingConference contribution

17 Citations (Scopus)

Abstract

This paper presents Markus Rost's proofs of two of his theorems, the Chain Lemma and the Norm Principle. This completes the published verification of the Bloch-Kato conjecture.

Original languageEnglish (US)
Title of host publicationAlgebraic Topology
Subtitle of host publicationThe Abel Symposium 2007 - Proceedings of the 4th Abel Symposium
Pages95-130
Number of pages36
DOIs
StatePublished - Dec 1 2009
Event4th Abel Symposium 2007: Algebraic Topology - Oslo, Norway
Duration: Aug 5 2007Aug 10 2007

Publication series

NameAlgebraic Topology: The Abel Symposium 2007 - Proceedings of the 4th Abel Symposium

Other

Other4th Abel Symposium 2007: Algebraic Topology
CountryNorway
CityOslo
Period8/5/078/10/07

Fingerprint

Lemma
Norm
Theorem

All Science Journal Classification (ASJC) codes

  • Algebra and Number Theory

Cite this

Haesemeyer, C., & Weibel, C. (2009). Norm varieties and the chain lemma. In Algebraic Topology: The Abel Symposium 2007 - Proceedings of the 4th Abel Symposium (pp. 95-130). (Algebraic Topology: The Abel Symposium 2007 - Proceedings of the 4th Abel Symposium). https://doi.org/10.1007/978-3-642-01200-6_6
Haesemeyer, Christian ; Weibel, Chuck. / Norm varieties and the chain lemma. Algebraic Topology: The Abel Symposium 2007 - Proceedings of the 4th Abel Symposium. 2009. pp. 95-130 (Algebraic Topology: The Abel Symposium 2007 - Proceedings of the 4th Abel Symposium).
@inproceedings{ed6a1f3cd6a34e27b1597013e8430f9d,
title = "Norm varieties and the chain lemma",
abstract = "This paper presents Markus Rost's proofs of two of his theorems, the Chain Lemma and the Norm Principle. This completes the published verification of the Bloch-Kato conjecture.",
author = "Christian Haesemeyer and Chuck Weibel",
year = "2009",
month = "12",
day = "1",
doi = "10.1007/978-3-642-01200-6_6",
language = "English (US)",
isbn = "9783642011993",
series = "Algebraic Topology: The Abel Symposium 2007 - Proceedings of the 4th Abel Symposium",
pages = "95--130",
booktitle = "Algebraic Topology",

}

Haesemeyer, C & Weibel, C 2009, Norm varieties and the chain lemma. in Algebraic Topology: The Abel Symposium 2007 - Proceedings of the 4th Abel Symposium. Algebraic Topology: The Abel Symposium 2007 - Proceedings of the 4th Abel Symposium, pp. 95-130, 4th Abel Symposium 2007: Algebraic Topology, Oslo, Norway, 8/5/07. https://doi.org/10.1007/978-3-642-01200-6_6

Norm varieties and the chain lemma. / Haesemeyer, Christian; Weibel, Chuck.

Algebraic Topology: The Abel Symposium 2007 - Proceedings of the 4th Abel Symposium. 2009. p. 95-130 (Algebraic Topology: The Abel Symposium 2007 - Proceedings of the 4th Abel Symposium).

Research output: Chapter in Book/Report/Conference proceedingConference contribution

TY - GEN

T1 - Norm varieties and the chain lemma

AU - Haesemeyer, Christian

AU - Weibel, Chuck

PY - 2009/12/1

Y1 - 2009/12/1

N2 - This paper presents Markus Rost's proofs of two of his theorems, the Chain Lemma and the Norm Principle. This completes the published verification of the Bloch-Kato conjecture.

AB - This paper presents Markus Rost's proofs of two of his theorems, the Chain Lemma and the Norm Principle. This completes the published verification of the Bloch-Kato conjecture.

UR - http://www.scopus.com/inward/record.url?scp=77950883863&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=77950883863&partnerID=8YFLogxK

U2 - 10.1007/978-3-642-01200-6_6

DO - 10.1007/978-3-642-01200-6_6

M3 - Conference contribution

AN - SCOPUS:77950883863

SN - 9783642011993

T3 - Algebraic Topology: The Abel Symposium 2007 - Proceedings of the 4th Abel Symposium

SP - 95

EP - 130

BT - Algebraic Topology

ER -

Haesemeyer C, Weibel C. Norm varieties and the chain lemma. In Algebraic Topology: The Abel Symposium 2007 - Proceedings of the 4th Abel Symposium. 2009. p. 95-130. (Algebraic Topology: The Abel Symposium 2007 - Proceedings of the 4th Abel Symposium). https://doi.org/10.1007/978-3-642-01200-6_6