Object Rearrangement with Nested Nonprehensile Manipulation Actions

Changkyu Song, Abdeslam Boularias

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

This paper considers the problem of rearrangement planning, i.e finding a sequence of manipulation actions that displace multiple objects from an initial configuration to a given goal configuration. Rearrangement is a critical skill for robots so that they can effectively operate in confined spaces that contain clutter. Examples of tasks that require rearrangement include packing objects inside a bin, wherein objects need to lay according to a predefined pattern. In tight bins, collision-free grasps are often unavailable. Nonprehensile actions, such as pushing and sliding, are preferred because they can be performed using minimalistic end-effectors that can easily be inserted in the bin. Rearrangement with nonprehensile actions is a challenging problem as it requires reasoning about object interactions in a combinatorially large configuration space of multiple objects. This work revisits several existing rearrangement planning techniques and introduces a new one that exploits nested nonprehensile actions by pushing several similar objects simultaneously along the same path, which removes the need to rearrange each object individually. Experiments in simulation and using a real Kuka robotic arm show the ability of the proposed approach to solve difficult rearrangement tasks while reducing the length of the end-effector's trajectories.

Original languageEnglish (US)
Title of host publication2019 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2019
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages6578-6585
Number of pages8
ISBN (Electronic)9781728140049
DOIs
StatePublished - Nov 2019
Externally publishedYes
Event2019 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2019 - Macau, China
Duration: Nov 3 2019Nov 8 2019

Publication series

NameIEEE International Conference on Intelligent Robots and Systems
ISSN (Print)2153-0858
ISSN (Electronic)2153-0866

Conference

Conference2019 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2019
CountryChina
CityMacau
Period11/3/1911/8/19

All Science Journal Classification (ASJC) codes

  • Control and Systems Engineering
  • Software
  • Computer Vision and Pattern Recognition
  • Computer Science Applications

Fingerprint Dive into the research topics of 'Object Rearrangement with Nested Nonprehensile Manipulation Actions'. Together they form a unique fingerprint.

Cite this