TY - JOUR
T1 - On modeling the tissue response from ultrasonic b-scan images
AU - Abeyratne, Udantha R.
AU - Petropulu, Athina P.
AU - Reid, John M.
N1 - Funding Information:
Manuscript received February 9, 1995; revised April 30, 1996. This work was supported by the US Army under Medical Research Grant DAMD17- 94-J-4362; the Whitaker Foundation; and NSF under grant MIP-955 3227. The Associate Editor responsible for coordinating the review of this paper and recommending its publication was R. W. Martin. Asterisk indicates corresponding author U. R. Abeyratne is with the Biomedical Engirieering and Science Institute, Drexel University, Philadelphia, PA 19104 USA. *A. P. Petropulu is with the Electrical and Computer Engineering Dept., Drexel University, 3141 Chestnut St., Philadelphia, PA 19104 USA (e-mail: athina@ artemis.ece.drexel.edu).
PY - 1996
Y1 - 1996
N2 - We model tissue as a collection of point scatterers embedded in a uniform media, and show that the higher-order statistics (HOS) of the scatterer spacing distribution can be estimated from digitized radio frequency (RF) scan line segments and be used in obtaining tissue signatures. We assume that RF echoes are non-Gaussian, on the grounds of empirical/theoretical justifications presented in the literature. Based on our model for tissue microstructure, we develop schemes for the estimation of resolvable periodicity as well as correlations among nonperiodic scatterers. Using HOS of the scattered signal, we define as tissue "color" a quantity that describes the scatterer spatial correlations, show how to evaluate it from the higher-order correlations of the digitized RF scan line segments, and investigate its potential as a tissue signature. The tools employed, i.e., HOS, were chosen as the most appropriate ones because they suppress Gaussian processes, such as the one arising from the diffused scatterers. HOS, unlike second-order statistics, also preserve the Fourierphase of the signature, the color of the tissue response. Working on simulated and clinical data, we show that the proposed periodicity estimation technique is superior to the widely used power spectrum and cepstrum techniques in terms of the accuracy of estimations. We also show that even when there is no significant periodicity in data, we are still able to characterize tissues using signatures based on the higher-order cumulant structure of the scatterer spacing distribution.
AB - We model tissue as a collection of point scatterers embedded in a uniform media, and show that the higher-order statistics (HOS) of the scatterer spacing distribution can be estimated from digitized radio frequency (RF) scan line segments and be used in obtaining tissue signatures. We assume that RF echoes are non-Gaussian, on the grounds of empirical/theoretical justifications presented in the literature. Based on our model for tissue microstructure, we develop schemes for the estimation of resolvable periodicity as well as correlations among nonperiodic scatterers. Using HOS of the scattered signal, we define as tissue "color" a quantity that describes the scatterer spatial correlations, show how to evaluate it from the higher-order correlations of the digitized RF scan line segments, and investigate its potential as a tissue signature. The tools employed, i.e., HOS, were chosen as the most appropriate ones because they suppress Gaussian processes, such as the one arising from the diffused scatterers. HOS, unlike second-order statistics, also preserve the Fourierphase of the signature, the color of the tissue response. Working on simulated and clinical data, we show that the proposed periodicity estimation technique is superior to the widely used power spectrum and cepstrum techniques in terms of the accuracy of estimations. We also show that even when there is no significant periodicity in data, we are still able to characterize tissues using signatures based on the higher-order cumulant structure of the scatterer spacing distribution.
UR - http://www.scopus.com/inward/record.url?scp=0030216928&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0030216928&partnerID=8YFLogxK
U2 - 10.1109/42.511751
DO - 10.1109/42.511751
M3 - Article
C2 - 18215929
AN - SCOPUS:0030216928
SN - 0278-0062
VL - 15
SP - 479
EP - 490
JO - IEEE Transactions on Medical Imaging
JF - IEEE Transactions on Medical Imaging
IS - 4
ER -