On Rota's problem for linear operators in associative algebras

Li Guo, William Y. Sit, Ronghua Zhang

Research output: Chapter in Book/Report/Conference proceedingConference contribution

2 Scopus citations

Abstract

A long standing problem of Gian-Carlo Rota for associative algebras is the classification of all linear operators that can be defined on them. In the 1970s, there were only a few known operators, for example, the derivative operator, the difference operator, the average operator and the Rota-Baxter operator. A few more appeared after Rota posed his problem. However, little progress was made to solve this problem in general. In part, this is because the precise meaning of the problem is not so well understood. In this paper, we propose a formulation of the problem using the framework of operated algebras and viewing an associative algebra with a linear operator as one that satisfies a certain operated polynomial identity. To narrow our focus more on the operators that Rota was interested in, we further consider two particular classes of operators, namely, those that generalize differential or Rota-Baxter operators. With the aid of computer algebra, we are able to come up with a list of these two classes of operators, and provide some evidence that these lists may be complete. Our search have revealed quite a few new operators of these types whose properties are expected to be similar to the differential operator and Rota-Baxter operator respectively. Recently, a more unified approach has emerged in related areas, such as difference algebra and differential algebra, and Rota-Baxter algebra and Nijenhuis algebra. The similarities in these theories can be more efficiently explored by advances on Rota's problem.

Original languageEnglish (US)
Title of host publicationISSAC 2011 - Proceedings of the 36th International Symposium on Symbolic and Algebraic Computation
Pages147-154
Number of pages8
DOIs
StatePublished - 2011
Event36th International Symposium on Symbolic and Algebraic Computation, ISSAC 2011 - San Jose, CA, United States
Duration: Jun 8 2011Jun 11 2011

Publication series

NameProceedings of the International Symposium on Symbolic and Algebraic Computation, ISSAC

Other

Other36th International Symposium on Symbolic and Algebraic Computation, ISSAC 2011
CountryUnited States
CitySan Jose, CA
Period6/8/116/11/11

All Science Journal Classification (ASJC) codes

  • Mathematics(all)

Keywords

  • Rota's problem
  • classification
  • differential type operators
  • operators
  • rota-baxter type operators

Fingerprint Dive into the research topics of 'On Rota's problem for linear operators in associative algebras'. Together they form a unique fingerprint.

Cite this