On the Convolution Inequality f ≥ f ⋆ f

Eric A. Carlen, Ian Jauslin, Elliott H. Lieb, Michael P. Loss

Research output: Contribution to journalArticlepeer-review

2 Scopus citations

Abstract

We consider the inequality $f \geqslant f\star f$ for real functions in $L^1({\mathbb{R}}^d)$ where $f\star f$ denotes the convolution of $f$ with itself. We show that all such functions $f$ are nonnegative, which is not the case for the same inequality in $L^p$ for any $1 < p \leqslant 2$, for which the convolution is defined. We also show that all solutions in $L^1({\mathbb{R}}^d)$ satisfy $\int _{{\mathbb{R}}^{\textrm{d}}}f(x)\ \textrm{d}x \leqslant \tfrac 12$. Moreover, if $\int _{{\mathbb{R}}^{\textrm{d}}}f(x)\ \textrm{d}x = \tfrac 12$, then $f$ must decay fairly slowly: $\int _{{\mathbb{R}}^{\textrm{d}}}|x| f(x)\ \textrm{d}x = \infty $, and this is sharp since for all $r< 1$, there are solutions with $\int _{{\mathbb{R}}^{\textrm{d}}}f(x)\ \textrm{d}x = \tfrac 12$ and $\int _{{\mathbb{R}}^{\textrm{d}}}|x|^r f(x)\ \textrm{d}x <\infty $. However, if $\int _{{\mathbb{R}}^{\textrm{d}}}f(x)\ \textrm{d}x =: a < \tfrac 12$, the decay at infinity can be much more rapid: we show that for all $a<\tfrac 12$, there are solutions such that for some $\varepsilon>0$, $\int _{{\mathbb{R}}^{\textrm{d}}}e^{\varepsilon |x|}f(x)\ \textrm{d}x < \infty $.

Original languageEnglish (US)
Pages (from-to)18604-18612
Number of pages9
JournalInternational Mathematics Research Notices
Volume2021
Issue number24
DOIs
StatePublished - Dec 1 2021

All Science Journal Classification (ASJC) codes

  • General Mathematics

Fingerprint

Dive into the research topics of 'On the Convolution Inequality f ≥ f ⋆ f'. Together they form a unique fingerprint.

Cite this