TY - JOUR
T1 - On the Convolution Inequality f ≥ f ⋆ f
AU - Carlen, Eric A.
AU - Jauslin, Ian
AU - Lieb, Elliott H.
AU - Loss, Michael P.
N1 - Publisher Copyright:
© 2021 The Author(s). Published by Oxford University Press. All rights reserved.
PY - 2021/12/1
Y1 - 2021/12/1
N2 - We consider the inequality $f \geqslant f\star f$ for real functions in $L^1({\mathbb{R}}^d)$ where $f\star f$ denotes the convolution of $f$ with itself. We show that all such functions $f$ are nonnegative, which is not the case for the same inequality in $L^p$ for any $1 < p \leqslant 2$, for which the convolution is defined. We also show that all solutions in $L^1({\mathbb{R}}^d)$ satisfy $\int _{{\mathbb{R}}^{\textrm{d}}}f(x)\ \textrm{d}x \leqslant \tfrac 12$. Moreover, if $\int _{{\mathbb{R}}^{\textrm{d}}}f(x)\ \textrm{d}x = \tfrac 12$, then $f$ must decay fairly slowly: $\int _{{\mathbb{R}}^{\textrm{d}}}|x| f(x)\ \textrm{d}x = \infty $, and this is sharp since for all $r< 1$, there are solutions with $\int _{{\mathbb{R}}^{\textrm{d}}}f(x)\ \textrm{d}x = \tfrac 12$ and $\int _{{\mathbb{R}}^{\textrm{d}}}|x|^r f(x)\ \textrm{d}x <\infty $. However, if $\int _{{\mathbb{R}}^{\textrm{d}}}f(x)\ \textrm{d}x =: a < \tfrac 12$, the decay at infinity can be much more rapid: we show that for all $a<\tfrac 12$, there are solutions such that for some $\varepsilon>0$, $\int _{{\mathbb{R}}^{\textrm{d}}}e^{\varepsilon |x|}f(x)\ \textrm{d}x < \infty $.
AB - We consider the inequality $f \geqslant f\star f$ for real functions in $L^1({\mathbb{R}}^d)$ where $f\star f$ denotes the convolution of $f$ with itself. We show that all such functions $f$ are nonnegative, which is not the case for the same inequality in $L^p$ for any $1 < p \leqslant 2$, for which the convolution is defined. We also show that all solutions in $L^1({\mathbb{R}}^d)$ satisfy $\int _{{\mathbb{R}}^{\textrm{d}}}f(x)\ \textrm{d}x \leqslant \tfrac 12$. Moreover, if $\int _{{\mathbb{R}}^{\textrm{d}}}f(x)\ \textrm{d}x = \tfrac 12$, then $f$ must decay fairly slowly: $\int _{{\mathbb{R}}^{\textrm{d}}}|x| f(x)\ \textrm{d}x = \infty $, and this is sharp since for all $r< 1$, there are solutions with $\int _{{\mathbb{R}}^{\textrm{d}}}f(x)\ \textrm{d}x = \tfrac 12$ and $\int _{{\mathbb{R}}^{\textrm{d}}}|x|^r f(x)\ \textrm{d}x <\infty $. However, if $\int _{{\mathbb{R}}^{\textrm{d}}}f(x)\ \textrm{d}x =: a < \tfrac 12$, the decay at infinity can be much more rapid: we show that for all $a<\tfrac 12$, there are solutions such that for some $\varepsilon>0$, $\int _{{\mathbb{R}}^{\textrm{d}}}e^{\varepsilon |x|}f(x)\ \textrm{d}x < \infty $.
UR - http://www.scopus.com/inward/record.url?scp=85143665294&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85143665294&partnerID=8YFLogxK
U2 - 10.1093/imrn/rnaa350
DO - 10.1093/imrn/rnaa350
M3 - Article
AN - SCOPUS:85143665294
SN - 1073-7928
VL - 2021
SP - 18604
EP - 18612
JO - International Mathematics Research Notices
JF - International Mathematics Research Notices
IS - 24
ER -