On the rate of phytoplankton respiration in the light

Michael L. Bender, Xin Guang Zhu, Paul Falkowski, Fangfang Ma, Kevin Griffin

Research output: Contribution to journalArticlepeer-review

Abstract

The rate of algal and cyanobacterial respiration in the light is an important ecophysiological term that remains to be completely characterized and quantified. To address this issue, we exploited process-specific decarboxylation rates from flux balance analysis and isotopically nonstationary metabolic flux analysis. Our study, based on published data, suggested that decarboxylation is about 22% of net CO2 assimilation when the tricarboxylic acid cycle is completely open (characterized by the commitment of alpha ketoglutarate to amino acid synthesis and very low rates of succinate formation). This estimate was supported by calculating the decarboxylation rates required to synthesize the major components of biomass (proteins, lipids, and carbohydrates) at their typical abundance. Of the 22 CO2 molecules produced by decarboxylation (normalized to net assimilation = 100), approximately 13 were from pyruvate and 3 were from isocitrate. The remaining six units of decarboxylation were in the amino acid synthesis pathways outside the tricarboxylic acid cycle. A small additional flux came from photorespiration, decarboxylations of six phosphogluconate in the oxidative pentose phosphate pathway, and decarboxylations in the syntheses of lower-abundance compounds, including pigments and ribonucleic acids. This general approach accounted for the high decarboxylation rates in algae and cyanobacteria compared to terrestrial plants. It prompts a simple speculation for the origin of the Kok effect and helps constrain the photoautotrophic respiration rate, in the light, in the euphotic zone of the ocean and lakes.

Original languageEnglish (US)
Pages (from-to)267-279
Number of pages13
JournalPlant physiology
Volume190
Issue number1
DOIs
StatePublished - Sep 2022
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Physiology
  • Genetics
  • Plant Science

Fingerprint

Dive into the research topics of 'On the rate of phytoplankton respiration in the light'. Together they form a unique fingerprint.

Cite this