On the theoretical properties of the exchange algorithm

Research output: Contribution to journalArticlepeer-review

2 Scopus citations

Abstract

The exchange algorithm is one of the most popular extensions of the Metropolis–Hastings algorithm to sample from doubly-intractable distributions. However, the theoretical exploration of the exchange algorithm is very limited. For example, natural questions like ‘Does exchange algorithm converge at a geometric rate?’ or ‘Does the exchange algorithm admit a Central Limit Theorem?’ have not been answered yet. In this paper, we study the theoretical properties of the exchange algorithm, in terms of asymptotic variance and convergence speed. We compare the exchange algorithm with the original Metropolis–Hastings algorithm and provide both necessary and sufficient conditions for the geometric ergodicity of the exchange algorithm. Moreover, we prove that our results can be applied to various practical applications such as location models, Gaussian models, Poisson models, and a large class of exponential families, which includes most of the practical applications of the exchange algorithm. A central limit theorem for the exchange algorithm is also established. Our results justify the theoretical usefulness of the exchange algorithm.

Original languageEnglish (US)
Pages (from-to)1935-1960
Number of pages26
JournalBernoulli
Volume28
Issue number3
DOIs
StatePublished - Aug 2022

All Science Journal Classification (ASJC) codes

  • Statistics and Probability

Keywords

  • Markov chain Monte Carlo
  • convergence
  • geometrically ergodic

Fingerprint

Dive into the research topics of 'On the theoretical properties of the exchange algorithm'. Together they form a unique fingerprint.

Cite this