Optimal allocation of sample size for randomization-based inference from 2K factorial designs

Arun Ravichandran, Nicole E. Pashley, Brian Libgober, Tirthankar Dasgupta

Research output: Contribution to journalArticlepeer-review

1 Scopus citations

Abstract

Optimizing the allocation of units into treatment groups can help researchers improve the precision of causal estimators and decrease costs when running factorial experiments. However, existing optimal allocation results typically assume a super-population model and that the outcome data come from a known family of distributions. Instead, we focus on randomization-based causal inference for the finite-population setting, which does not require model specifications for the data or sampling assumptions. We propose exact theoretical solutions for optimal allocation in 2K factorial experiments under complete randomization with A-, D-, and E-optimality criteria. We then extend this work to factorial designs with block randomization. We also derive results for optimal allocations when using cost-based constraints. To connect our theory to practice, we provide convenient integer-constrained programming solutions using a greedy optimization approach to find integer optimal allocation solutions for both complete and block randomizations. The proposed methods are demonstrated using two real-life factorial experiments conducted by social scientists.

Original languageEnglish (US)
Article number20230046
JournalJournal of Causal Inference
Volume12
Issue number1
DOIs
StatePublished - Jan 1 2024
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Statistics and Probability
  • Statistics, Probability and Uncertainty

Keywords

  • Neyman
  • factorial design
  • optimum allocation
  • randomization

Fingerprint

Dive into the research topics of 'Optimal allocation of sample size for randomization-based inference from 2K factorial designs'. Together they form a unique fingerprint.

Cite this