Optimal cell flipping to minimize channel density in VLSI design and pseudo-boolean optimization

Endre Boros, Peter L. Hammer, Michel Minoux, David J. Rader

Research output: Contribution to journalArticlepeer-review

11 Scopus citations

Abstract

Cell flipping in VLSI design is an operation in which some of the cells are replaced with their "mirror images" with respect to a vertical axis, while keeping them in the same slot. After the placement of all the cells, one can apply cell flipping in order to further decrease the total area, approximating this objective by minimizing total wire length, channel width, etc. However, finding an optimal set of cells to be flipped is usually a difficult problem. In this paper we show that cell flipping can be efficiently applied to minimize channel density in the standard cell technology. We show that an optimal flipping pattern can be found in O(p(n/c)c) time, where n, p and c denote the number of nets, pins and channels, respectively. Moreover, in the one channel case (i.e. when c = 1) the cell flipping problem can be solved in O(p log n) time. For the multichannel case we present both an exact enumeration scheme and a mixed-integer program that generates an approximate solution very quickly. We present computational results on examples up to 139 channels and 65 000 cells.

Original languageEnglish (US)
Pages (from-to)69-88
Number of pages20
JournalDiscrete Applied Mathematics
Volume90
Issue number1-3
DOIs
StatePublished - Jan 15 1999

All Science Journal Classification (ASJC) codes

  • Discrete Mathematics and Combinatorics
  • Applied Mathematics

Fingerprint

Dive into the research topics of 'Optimal cell flipping to minimize channel density in VLSI design and pseudo-boolean optimization'. Together they form a unique fingerprint.

Cite this