Optimal offline compensation of shape shrinkage for three-dimensional printing processes

Qiang Huang, Jizhe Zhang, Arman Sabbaghi, Tirthankar Dasgupta

Research output: Contribution to journalArticlepeer-review

111 Scopus citations


Dimensional accuracy is a key control issue in direct three-dimensional (3D) printing. Part shrinkage due to material phase changes often leads to deviations in the final shape, requiring extra post-machining steps for correction. Shrinkage has traditionally been analyzed through finite element simulation and experimental investigations. Systematic models for accuracy control through shrinkage compensation are rarely available, particularly for complete control of all local features. To fill the gap for direct printing and compensate for shape shrinkage, this article develops a new approach to (i) model and predict part shrinkage and (ii) derive an optimal shrinkage compensation plan to achieve dimensional accuracy. The developed approach is demonstrated both analytically and experimentally in a stereolithography process, one of the most widely employed 3D printing techniques. Experimental results demonstrate the ability of the proposed compensation approach to achieve an improvement of an order of magnitude in the reduction of geometric errors for cylindrical products.

Original languageEnglish (US)
Pages (from-to)431-441
Number of pages11
JournalIIE Transactions (Institute of Industrial Engineers)
Issue number5
StatePublished - May 4 2015
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Industrial and Manufacturing Engineering


  • Degradation modeling
  • prognostics
  • reliability prediction
  • vibration modeling

Fingerprint Dive into the research topics of 'Optimal offline compensation of shape shrinkage for three-dimensional printing processes'. Together they form a unique fingerprint.

Cite this