Abstract
Transmitter power control has been shown to be an efficient and effective means for supporting variable-service users in wireless networks. In this presentation, an estimator-based controller is proposed for distributed uplink power control. The controller is optimal with respect to minimizing a cost function consisting of a user's signal-to-interference ratio (SIR) error and the network interference, in a decentralized manner. Assuming sufficiently good estimates, the controller has the potential of providing convergence in a few iterations. The main feature of the proposed controller is that it saves the user transmit power while achieving a satisfactory SIR value. Furthermore, the issue of joint minimization of network interference and a user's SIR error is addressed in a distributed manner so as to obtain a desired tradeoff.
Original language | English (US) |
---|---|
Pages (from-to) | 5128-5133 |
Number of pages | 6 |
Journal | Proceedings of the IEEE Conference on Decision and Control |
Volume | 5 |
State | Published - 2004 |
Event | 2004 43rd IEEE Conference on Decision and Control (CDC) - Nassau, Bahamas Duration: Dec 14 2004 → Dec 17 2004 |
All Science Journal Classification (ASJC) codes
- Control and Systems Engineering
- Modeling and Simulation
- Control and Optimization