Skip to main navigation
Skip to search
Skip to main content
Rutgers, The State University of New Jersey Home
Help & FAQ
Home
Profiles
Research units
Core Facilities
Federal Grants
Research output
Search by expertise, name or affiliation
Oracle posterior contraction rates under hierarchical priors
Qiyang Han
School of Arts and Sciences, Statistics
Research output
:
Contribution to journal
›
Article
›
peer-review
1
Scopus citations
Overview
Fingerprint
Fingerprint
Dive into the research topics of 'Oracle posterior contraction rates under hierarchical priors'. Together they form a unique fingerprint.
Sort by
Weight
Alphabetically
Keyphrases
Oracle
100%
Hierarchical Prior
100%
Posterior Contraction Rate
100%
Non-asymptotic
66%
Gaussianity
66%
Theory Framework
33%
Frequentist
33%
Nonsmooth
33%
Point Estimator
33%
Model Misspecification
33%
Covariance Matrix Estimation
33%
Image Boundary
33%
Minimax
33%
Posterior Distribution
33%
Oracle Inequality
33%
Intensity Estimation
33%
Log-likelihood Ratio
33%
Entropy Condition
33%
Posterior Mean
33%
Adaptive Point
33%
Tail Behavior
33%
Convex Regression
33%
Prior Beliefs
33%
Best Approximating
33%
Adaptive Estimator
33%
Statistical Experiment
33%
Generic Construction
33%
Oracle Rate
33%
Local Entropy
33%
Trace Regression
33%
Sparse Factor Models
33%
Poisson Point Process Model
33%
General Bayes
33%
Model Selection Uncertainty
33%
Partially Linear Regression Model
33%
Construction Scheme
33%
Mathematics
Gaussian Distribution
100%
Asymptotics
50%
Frequentist
50%
Point Estimator
50%
Model Selection
50%
Minimax
50%
Posterior Distribution
50%
Poisson Point Process
50%
Entropy Condition
50%
Log Likelihood Ratio
50%
Posterior Mean
50%
Model Misspecification
50%
Covariance Matrix Estimation
50%
Local Entropy
50%
Prior Belief
50%
Linear Regression Analysis
50%