Orbital climate forcing of δ13C excursions in the late Paleocene-early Eocene (chrons C24n-C25n)

Research output: Contribution to journalArticlepeer-review

234 Scopus citations

Abstract

High-resolution stable carbon isotope records for upper Paleocene-lower Eocene sections at Ocean Drilling Program Sites 1051 and 690 and Deep Sea Drilling Project Sites 550 and 577 show numerous rapid (40-60 kyr duration) negative excursions of up to 1‰. We demonstrate that these transient decreases are the expected result of nonlinear insolation forcing of the carbon cycle in the context of a long carbon residence time. The transients occur at maxima in Earth's orbital eccentricity, which result in high-amplitude variations in insolation due to forcing by climatic precession. The construction of accurate orbital chronologies for geologic sections older than ∼35 Ma relies on identifying a high-fidelity recorder of variations in Earth's orbital eccentricity. We use the carbon isotope records as such a recorder, establishing a robust orbitally tuned chronology for latest Paleocene-earliest Eocene events. Moreover, the transient decreases provide a means of precise correlation among the four sites that is independent of magnetostratigraphic and biostratigraphic data at the <105-year scale. While the eccentricity-controlled transient decreases bear some resemblance to the much larger-amplitude carbon isotope excursion (CIE) that marks the Paleocene/Eocene boundary, the latter event is found to occur near a minimum in the ∼400-kyr eccentricity cycle. Thus the CIE occurred during a time of minimal variability in insolation, the dominant mechanism for forcing climate change on 104-year scales. We argue that this is inconsistent with mechanisms that rely on a threshold climate event to trigger the Paleocene/Eocene thermal maximum since any threshold would more likely be crossed during a period of high-amplitude climate variations.

Original languageEnglish (US)
Article number1097
JournalPaleoceanography
Volume18
Issue number4
DOIs
StatePublished - Dec 1 2003

All Science Journal Classification (ASJC) codes

  • Oceanography
  • Palaeontology

Keywords

  • Paleocene/Eocene boundary
  • carbon isotopes
  • orbital stratigraphy

Fingerprint Dive into the research topics of 'Orbital climate forcing of δ<sup>13</sup>C excursions in the late Paleocene-early Eocene (chrons C24n-C25n)'. Together they form a unique fingerprint.

Cite this