Abstract
Substantial activation of the HGF/c-Met signaling pathway is involved in the progression of several types of cancers and associated with increased tumor invasion and metastatic potential. Underlying HGF-induced tumorigenesis, epithelial to mesenchymal transition (EMT) shows a positive correlation with progression in patients. We previously determined that osthole is a potent fatty acid synthase (FASN) inhibitor. FASN is implicated in cancer progression and may regulate lipid raft function. We therefore examined whether osthole could block HGF-induced tumorigenesis by disrupting lipid rafts. Here, we found that osthole could abrogate HGF-induced cell scattering, migration, and invasion in MCF-7 breast cancer cells. Osthole also effectively inhibited the HGF-induced decrease of E-cadherin and increase of vimentin via down-regulation of phosphorylated Akt and mTOR. Interestingly, osthole blocked HGF-induced c-Met phosphorylation and repressed the expression of total c-Met protein in MCF-7 cells. In addition, C75, a pharmacological inhibitor of FASN, repressed the expression of total c-Met protein in MCF-7 cells. Consistent with a role for FASN, loss of c-Met in cells treated with osthole was prevented by the exogenous addition of palmitate. Briefly, our result suggests a connection between FASN activity and c-Met protein expression and that osthole is a potential compound for breast cancer therapy by targeting the major pathway of HGF/c-Met-induced EMT.
Original language | English (US) |
---|---|
Pages (from-to) | 9683-9690 |
Number of pages | 8 |
Journal | Journal of agricultural and food chemistry |
Volume | 59 |
Issue number | 17 |
DOIs | |
State | Published - Sep 14 2011 |
All Science Journal Classification (ASJC) codes
- Chemistry(all)
- Agricultural and Biological Sciences(all)
Keywords
- Akt
- c-Met
- epithelial-mesenchymal transition
- mTOR
- osthole