TY - JOUR
T1 - Over expression of vascular endothelial growth factor and its receptor during the development of estrogen-induced rat pituitary tumors may mediate estrogen-initiated tumor angiogenesis
AU - Banerjee, Sushanta K.
AU - Sarkar, Dipak K.
AU - Weston, Allan P.
AU - De, Alok
AU - Campbell, Donald R.
PY - 1997/6
Y1 - 1997/6
N2 - Estrogens, which have been associated with several types of human and animal cancers, can induce tumor angiogenesis in the pituitary of Fischer 344 rats. The mechanistic details of tumor angiogenesis induction, during estrogen carcinogenesis, are still unknown. To elucidate the role of estrogen in the regulation of tumor angiogenesis in the pituitary of female rats, the density of blood vessels was analysed using factor VIII related antigen (FVIIIRAg) immunohistochemistry and the expression of vascular endothelial growth factor/vascular permeability factor (VEGF/VPF) was examined by Western blot and immunohistochemical analysis. The expression of VEGF receptor (VEGFR-2/Flk-1/KDR) was also examined by immunohistochemistry. The results demonstrated that 17β-estradiol (E2) induces neovascularization, as well as the growth and enlargement of blood vessels after 7 days of exposure. The high tumor angiogenic potential was associated with an elevated VEGF/VPF protein expression in the E2 exposed pituitary of ovariectomized (OVEX) rats. VEGF/VPF and FVIIIRAg immunohistochemistry and endothelial specific lectin (UEA1) binding studies, indicate that the elevation of VEGF protein expression initially occurred in both blood vessels and non-endothelial cells. After 15 days of E2 exposure, VEGF/VPF protein expression, in the non-endothelial cell population, sharply declined and was restricted to the blood vessels. The function of non-endothelial-derived VEGF is not clear. Furthermore, immunohistochemical studies demonstrated that VEGFR-2 (flk-1/KDR), expression was elevated significantly in the endothelial cells of microblood vessels after 7 days of E2 exposure. These findings suggest that over expression of VEGF and its receptor (VEGFR-2) may play an important role in the initial step of the regulation of estrogen induced tumor angiogenesis in the rat pituitary.
AB - Estrogens, which have been associated with several types of human and animal cancers, can induce tumor angiogenesis in the pituitary of Fischer 344 rats. The mechanistic details of tumor angiogenesis induction, during estrogen carcinogenesis, are still unknown. To elucidate the role of estrogen in the regulation of tumor angiogenesis in the pituitary of female rats, the density of blood vessels was analysed using factor VIII related antigen (FVIIIRAg) immunohistochemistry and the expression of vascular endothelial growth factor/vascular permeability factor (VEGF/VPF) was examined by Western blot and immunohistochemical analysis. The expression of VEGF receptor (VEGFR-2/Flk-1/KDR) was also examined by immunohistochemistry. The results demonstrated that 17β-estradiol (E2) induces neovascularization, as well as the growth and enlargement of blood vessels after 7 days of exposure. The high tumor angiogenic potential was associated with an elevated VEGF/VPF protein expression in the E2 exposed pituitary of ovariectomized (OVEX) rats. VEGF/VPF and FVIIIRAg immunohistochemistry and endothelial specific lectin (UEA1) binding studies, indicate that the elevation of VEGF protein expression initially occurred in both blood vessels and non-endothelial cells. After 15 days of E2 exposure, VEGF/VPF protein expression, in the non-endothelial cell population, sharply declined and was restricted to the blood vessels. The function of non-endothelial-derived VEGF is not clear. Furthermore, immunohistochemical studies demonstrated that VEGFR-2 (flk-1/KDR), expression was elevated significantly in the endothelial cells of microblood vessels after 7 days of E2 exposure. These findings suggest that over expression of VEGF and its receptor (VEGFR-2) may play an important role in the initial step of the regulation of estrogen induced tumor angiogenesis in the rat pituitary.
UR - http://www.scopus.com/inward/record.url?scp=0031408416&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0031408416&partnerID=8YFLogxK
U2 - 10.1093/carcin/18.6.1155
DO - 10.1093/carcin/18.6.1155
M3 - Article
C2 - 9214597
AN - SCOPUS:0031408416
SN - 0143-3334
VL - 18
SP - 1155
EP - 1161
JO - Carcinogenesis
JF - Carcinogenesis
IS - 6
ER -