Owyhee River intracanyon lava flows: Does the river give a dam?

Lisa L. Ely, Cooper C. Brossy, P. Kyle House, Elizabeth B. Safran, Jim E. O'Connor, Duane E. Champion, Cassandra R. Fenton, Ninad R. Bondre, Caitlin A. Orem, Gordon E. Grant, Christopher D. Henry, Brent D. Turrin

Research output: Contribution to journalArticlepeer-review

30 Scopus citations


Rivers carved into uplifted plateaus are commonly disrupted by discrete events from the surrounding landscape, such as lava flows or large mass movements. These disruptions are independent of slope, basin area, or channel discharge, and can dominate aspects of valley morphology and channel behavior for many kilometers. We document and assess the effects of one type of disruptive event, lava dams, on river valley morphology and incision rates at a variety of time scales, using examples from the Owyhee River in southeastern Oregon. Six sets of basaltic lava flows entered and dammed the river canyon during two periods in the late Cenozoic ca. 2 Ma-780 ka and 250-70 ka. The dams are strongly asymmetric, with steep, blunt escarpments facing up valley and long, low slopes down valley. None of the dams shows evidence of catastrophic failure; all blocked the river and diverted water over or around the dam crest. The net effect of the dams was therefore to inhibit rather than promote incision. Once incision resumed, most of the intracanyon flows were incised relatively rapidly and therefore did not exert a lasting impact on the river valley profile over time scales >106 yr. The net longterm incision rate from the time of the oldest documented lava dam, the Bogus Rim lava dam (1.7 Ma), to present was 0.18 mm/yr, but incision rates through or around individual lava dams were up to an order of magnitude greater. At least three lava dams (Bogus Rim, Saddle Butte, and West Crater) show evidence that incision initiated only after the impounded lakes filled completely with sediment and there was gravel transport across the dams. The most recent lava dam, formed by the West Crater lava flow around 70 ka, persisted for at least 25 k.y. before incision began, and the dam was largely removed within another 35 k.y. The time scale over which the lava dams inhibit incision is therefore directly affected by both the volume of lava forming the dam and the time required for sediment to fill the blocked valley. Variations in this primary process of incision through the lava dams could be influenced by additional independent factors such as regional uplift, drainage integration, or climate that affect the relative base level, discharge, and sediment yield within the watershed. By redirecting the river, tributaries, and subsequent lava flows to different parts of the canyon, lava dams create a distinct valley morphology of flat, broad basalt shelves capping steep cliffs of Tertiary sediment. This stratigraphy is conducive to landsliding and extends the effects of intracanyon lava flows on channel geomorphology beyond the lifetime of the dams.

Original languageEnglish (US)
Pages (from-to)1667-1687
Number of pages21
JournalBulletin of the Geological Society of America
Issue number11-12
StatePublished - 2012
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Geology


Dive into the research topics of 'Owyhee River intracanyon lava flows: Does the river give a dam?'. Together they form a unique fingerprint.

Cite this