PatchDPCC: A Patchwise Deep Compression Framework for Dynamic Point Clouds

Zirui Pan, Mengbai Xiao, Xu Han, Dongxiao Yu, Guanghui Zhang, Yao Liu

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

When compressing point clouds, point-based deep learning models operate points in a continuous space, which has a chance to minimize the geometric fidelity loss introduced by voxelization in preprocessing. But these methods could hardly scale to inputs with arbitrary points. Furthermore, the point cloud frames are individually compressed, failing the conventional wisdom of leveraging inter-frame similarity. In this work, we propose a patchwise compression framework called patchDPCC, which consists of a patch group generation module and a point-based compression model. Algorithms are developed to generate patches from different frames representing the same object, and more importantly, these patches are regulated to have the same number of points. We also incorporate a feature transfer module in the compression model, which refines the feature quality by exploiting the inter-frame similarity. Our model generates point-wise features for entropy coding, which guarantees the reconstruction speed. The evaluation on the MPEG 8i dataset shows that our method improves the compression ratio by 47.01% and 85.22% when compared to PCGCv2 and V-PCC with the same reconstruction quality, which is 9% and 16% better than that D-DPCC does. Our method also achieves the fastest decoding speed among the learning-based compression models.

Original languageEnglish (US)
Title of host publicationTechnical Tracks 14
EditorsMichael Wooldridge, Jennifer Dy, Sriraam Natarajan
PublisherAssociation for the Advancement of Artificial Intelligence
Pages4406-4414
Number of pages9
Edition5
ISBN (Electronic)1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879
DOIs
StatePublished - Mar 25 2024
Event38th AAAI Conference on Artificial Intelligence, AAAI 2024 - Vancouver, Canada
Duration: Feb 20 2024Feb 27 2024

Publication series

NameProceedings of the AAAI Conference on Artificial Intelligence
Number5
Volume38
ISSN (Print)2159-5399
ISSN (Electronic)2374-3468

Conference

Conference38th AAAI Conference on Artificial Intelligence, AAAI 2024
Country/TerritoryCanada
CityVancouver
Period2/20/242/27/24

All Science Journal Classification (ASJC) codes

  • Artificial Intelligence

Fingerprint

Dive into the research topics of 'PatchDPCC: A Patchwise Deep Compression Framework for Dynamic Point Clouds'. Together they form a unique fingerprint.

Cite this