Path integrals for causal diamonds and the covariant entropy principle

Tom Banks, Patrick Draper, Szilard Farkas

Research output: Contribution to journalArticlepeer-review

Abstract

We study causal diamonds in Minkowski, Schwarzschild, (anti-)de Sitter, and Schwarzschild-de Sitter spacetimes using Euclidean methods. The null boundaries of causal diamonds are shown to map to isolated punctures in the Euclidean continuation of the parent manifold. Boundary terms around these punctures decrease the Euclidean action by A/4, where A is the area of the holographic screen around the diamond. We identify these boundary contributions with the maximal entropy of gravitational degrees of freedom associated with the diamond.

Original languageEnglish (US)
Article number106022
JournalPhysical Review D
Volume103
Issue number10
DOIs
StatePublished - May 21 2021

All Science Journal Classification (ASJC) codes

  • Physics and Astronomy (miscellaneous)

Fingerprint

Dive into the research topics of 'Path integrals for causal diamonds and the covariant entropy principle'. Together they form a unique fingerprint.

Cite this