Abstract
Amides are of fundamental interest in many fields of chemistry involving organic synthesis, chemical biology and biochemistry. Here, we report the first catalytic Buchwald-Hartwig coupling of both common esters and amides by highly selective C(acyl)-X (X = O, N) cleavage to rapidly access aryl amide functionality via a cross-coupling strategy. Reactions are promoted by versatile, easily prepared, well-defined Pd-PEPPSI type precatalysts, and proceed in good to excellent yields and with excellent chemoselectivity for the acyl bond cleavage. The method is user friendly because it employs commercially-available, moisture- and air-stable precatalysts. Notably, for the first time we demonstrate selective C(acyl)-N and C(acyl)-O cleavage/Buchwald-Hartwig amination under the same reaction conditions, which allows for streamlining amide synthesis by avoiding restriction to a particular acyl metal precursor. Of broad interest, this study opens the door to using a family of well-defined Pd(ii)-NHC precatalysts bearing pyridine "throw-away" ligands for the selective C(acyl)-amination of bench-stable carboxylic acid derivatives.
Original language | English (US) |
---|---|
Pages (from-to) | 10584-10587 |
Number of pages | 4 |
Journal | Chemical Communications |
Volume | 53 |
Issue number | 76 |
DOIs | |
State | Published - 2017 |
All Science Journal Classification (ASJC) codes
- Catalysis
- Electronic, Optical and Magnetic Materials
- Ceramics and Composites
- General Chemistry
- Surfaces, Coatings and Films
- Metals and Alloys
- Materials Chemistry