TY - JOUR
T1 - PhyloSort
T2 - A user-friendly phylogenetic sorting tool and its application to estimating the cyanobacterial contribution to the nuclear genome of Chlamydomonas
AU - Moustafa, Ahmed
AU - Bhattacharya, Debashish
N1 - Funding Information:
We would like to thank ej-technologies for providing a license for install4j that was used for generating multi-platform installers for PhyloSort. This work was supported by a grant from the National Institutes of Health (R01ES013679) awarded to DB. We acknowledge the intellectual input of Adrian Reyes-Prieto (University of Iowa) in this project.
PY - 2008
Y1 - 2008
N2 - Background. Phylogenomic pipelines generate a large collection of phylogenetic trees that require manual inspection to answer questions about gene or genome evolution. A notable application of phylogenomics is to photosynthetic organelle (plastid) endosymbiosis. In the case of primary endosymbiosis, a heterotrophic protist engulfed a cyanobacterium, giving rise to the first photosynthetic eukaryote. Plastid establishment precipitated extensive gene transfer from the endosymbiont to the nuclear genome of the 'host'. Estimating the magnitude of this endosymbiotic gene transfer (EGT) and determining the functions of the prokaryotic genes remain controversial issues. We used phylogenomics to study EGT in the model green alga Chlamydomonas reinhardtii. To facilitate this procedure, we developed PhyloSort to rapidly search large collection of trees for monophyletic relationships. Here we present PhyloSort and its application to estimating EGT in Chlamydomonas. Results. PhyloSort is an open-source tool to sort phylogenetic trees by searching for user specified subtrees that contain a monophyletic group of interest defined by operational taxonomic units in a phylogenomic context. Using PhyloSort, we identified 897 Chlamydomonas genes of putative cyanobacterial origin, of which 531 had bootstrap support values ≥ 50% for the grouping of the algal and cyanobacterial homologs. Conclusion. PhyloSort can be applied to quantify the number of genes that support different evolutionary hypotheses such as a taxonomic classification or endosymbiotic or horizontal gene transfer events. In our application, we demonstrate that cyanobacteria account for 3.5-6% of the protein-coding genes in the nuclear genome of Chlamydomonas.
AB - Background. Phylogenomic pipelines generate a large collection of phylogenetic trees that require manual inspection to answer questions about gene or genome evolution. A notable application of phylogenomics is to photosynthetic organelle (plastid) endosymbiosis. In the case of primary endosymbiosis, a heterotrophic protist engulfed a cyanobacterium, giving rise to the first photosynthetic eukaryote. Plastid establishment precipitated extensive gene transfer from the endosymbiont to the nuclear genome of the 'host'. Estimating the magnitude of this endosymbiotic gene transfer (EGT) and determining the functions of the prokaryotic genes remain controversial issues. We used phylogenomics to study EGT in the model green alga Chlamydomonas reinhardtii. To facilitate this procedure, we developed PhyloSort to rapidly search large collection of trees for monophyletic relationships. Here we present PhyloSort and its application to estimating EGT in Chlamydomonas. Results. PhyloSort is an open-source tool to sort phylogenetic trees by searching for user specified subtrees that contain a monophyletic group of interest defined by operational taxonomic units in a phylogenomic context. Using PhyloSort, we identified 897 Chlamydomonas genes of putative cyanobacterial origin, of which 531 had bootstrap support values ≥ 50% for the grouping of the algal and cyanobacterial homologs. Conclusion. PhyloSort can be applied to quantify the number of genes that support different evolutionary hypotheses such as a taxonomic classification or endosymbiotic or horizontal gene transfer events. In our application, we demonstrate that cyanobacteria account for 3.5-6% of the protein-coding genes in the nuclear genome of Chlamydomonas.
UR - http://www.scopus.com/inward/record.url?scp=40049106345&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=40049106345&partnerID=8YFLogxK
U2 - 10.1186/1471-2148-8-6
DO - 10.1186/1471-2148-8-6
M3 - Article
C2 - 18194581
AN - SCOPUS:40049106345
SN - 1471-2148
VL - 8
JO - BMC Evolutionary Biology
JF - BMC Evolutionary Biology
IS - 1
M1 - 6
ER -