Physical crosslinking of collagen fibers: Comparison of ultraviolet irradiation and dehydrothermal treatment

Kevin S. Weadock, Edward J. Miller, Lisa D. Bellincampi, Joseph P. Zawadsky, Michael G. Dunn

Research output: Contribution to journalArticlepeer-review

292 Scopus citations

Abstract

The strength, resorption rate, and biocompatibility of collagenous biomaterials are profoundly influenced by the method and extent of crosslinking. We compared the effects of two physical crosslinking methods, ultraviolet irradiation (UV) (254 nm) and dehydrothermal (DHT) treatment, on the mechanical properties and molecular integrity of collagen fibers extruded from an acidic dispersion of type I bovine dermal collagen. Collagen fibers exposed to UV irradiation for 15 min had ultimate tensile strength (54 MPa) and modulus (184 MPa) values greater than or equivalent to values for fibers crosslinked with DHT treatment for 3 or 5 days. UV irradiation is a rapid and easily controlled means of increasing the mechanical strength of collagen fibers. Characterization of collagen extracted from the crosslinked samples by dilute acetic acid and limited pepsin digestion indicate that both UV and DHT treatments cause fragmentation of at least a portion of the collagen molecules. Partial loss of the native collagen structure may influence attachment, migration, and proliferation of cells on collagen fiberbased ligament analogs. These issues are currently being addressed in our laboratory. © 1995 John Wiley & Sons, Inc.

Original languageEnglish (US)
Pages (from-to)1373-1379
Number of pages7
JournalJournal of Biomedical Materials Research
Volume29
Issue number11
DOIs
StatePublished - Nov 1995

All Science Journal Classification (ASJC) codes

  • Biomaterials
  • Biomedical Engineering

Fingerprint

Dive into the research topics of 'Physical crosslinking of collagen fibers: Comparison of ultraviolet irradiation and dehydrothermal treatment'. Together they form a unique fingerprint.

Cite this