TY - JOUR
T1 - PIK3CA mutations and TP53 alterations cooperate to increase cancerous phenotypes and tumor heterogeneity
AU - Croessmann, Sarah
AU - Wong, Hong Yuen
AU - Zabransky, Daniel J.
AU - Chu, David
AU - Rosen, D. Marc
AU - Cidado, Justin
AU - Cochran, Rory L.
AU - Dalton, W. Brian
AU - Erlanger, Bracha
AU - Cravero, Karen
AU - Button, Berry
AU - Kyker-Snowman, Kelly
AU - Hurley, Paula J.
AU - Lauring, Josh
AU - Park, Ben Ho
N1 - Publisher Copyright:
© 2017, Springer Science+Business Media New York.
PY - 2017/4/1
Y1 - 2017/4/1
N2 - Background/purpose: The combined contributions of oncogenes and tumor suppressor genes toward carcinogenesis remain poorly understood. Elucidation of cancer gene cooperativity can provide new insights leading to more effective use of therapies. Experimental design/Methods: We used somatic cell genome editing to introduce singly and in combination PIK3CA mutations (E545K or H1047R) with TP53 alterations (R248W or knockout), to assess any enhanced cancerous phenotypes. The non-tumorigenic human breast epithelial cell line, MCF10A, was used as the parental cell line, and resultant cells were assessed via various in vitro assays, growth as xenografts, and drug sensitivity assays using targeted agents and chemotherapies. Results: Compared to single-gene-targeted cells and parental controls, cells with both a PIK3CA mutation and TP53 alteration had increased cancerous phenotypes including cell proliferation, soft agar colony formation, aberrant morphology in acinar formation assays, and genomic heterogeneity. Cells also displayed varying sensitivities to anti-neoplastic drugs, although all cells with PIK3CA mutations showed a relative increased sensitivity to paclitaxel. All cell lines remained non-tumorigenic. Conclusions: This cell line panel provides a resource for further elucidating cooperative genetic mediators of carcinogenesis and response to therapies.
AB - Background/purpose: The combined contributions of oncogenes and tumor suppressor genes toward carcinogenesis remain poorly understood. Elucidation of cancer gene cooperativity can provide new insights leading to more effective use of therapies. Experimental design/Methods: We used somatic cell genome editing to introduce singly and in combination PIK3CA mutations (E545K or H1047R) with TP53 alterations (R248W or knockout), to assess any enhanced cancerous phenotypes. The non-tumorigenic human breast epithelial cell line, MCF10A, was used as the parental cell line, and resultant cells were assessed via various in vitro assays, growth as xenografts, and drug sensitivity assays using targeted agents and chemotherapies. Results: Compared to single-gene-targeted cells and parental controls, cells with both a PIK3CA mutation and TP53 alteration had increased cancerous phenotypes including cell proliferation, soft agar colony formation, aberrant morphology in acinar formation assays, and genomic heterogeneity. Cells also displayed varying sensitivities to anti-neoplastic drugs, although all cells with PIK3CA mutations showed a relative increased sensitivity to paclitaxel. All cell lines remained non-tumorigenic. Conclusions: This cell line panel provides a resource for further elucidating cooperative genetic mediators of carcinogenesis and response to therapies.
KW - Breast cancer
KW - PIK3CA
KW - TP53
KW - Tumor heterogeneity
UR - http://www.scopus.com/inward/record.url?scp=85012188058&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85012188058&partnerID=8YFLogxK
U2 - 10.1007/s10549-017-4147-2
DO - 10.1007/s10549-017-4147-2
M3 - Article
C2 - 28190247
AN - SCOPUS:85012188058
SN - 0167-6806
VL - 162
SP - 451
EP - 464
JO - Breast Cancer Research and Treatment
JF - Breast Cancer Research and Treatment
IS - 3
ER -