TY - JOUR
T1 - Pines’ demon observed as a 3D acoustic plasmon in Sr2RuO4
AU - Husain, Ali A.
AU - Huang, Edwin W.
AU - Mitrano, Matteo
AU - Rak, Melinda S.
AU - Rubeck, Samantha I.
AU - Guo, Xuefei
AU - Yang, Hongbin
AU - Sow, Chanchal
AU - Maeno, Yoshiteru
AU - Uchoa, Bruno
AU - Chiang, Tai C.
AU - Batson, Philip E.
AU - Phillips, Philip W.
AU - Abbamonte, Peter
N1 - Publisher Copyright:
© 2023, The Author(s).
PY - 2023/9/7
Y1 - 2023/9/7
N2 - The characteristic excitation of a metal is its plasmon, which is a quantized collective oscillation of its electron density. In 1956, David Pines predicted that a distinct type of plasmon, dubbed a ‘demon’, could exist in three-dimensional (3D) metals containing more than one species of charge carrier1. Consisting of out-of-phase movement of electrons in different bands, demons are acoustic, electrically neutral and do not couple to light, so have never been detected in an equilibrium, 3D metal. Nevertheless, demons are believed to be critical for diverse phenomena including phase transitions in mixed-valence semimetals2, optical properties of metal nanoparticles3, soundarons in Weyl semimetals4 and high-temperature superconductivity in, for example, metal hydrides3,5–7. Here, we present evidence for a demon in Sr2RuO4 from momentum-resolved electron energy-loss spectroscopy. Formed of electrons in the β and γ bands, the demon is gapless with critical momentum q c = 0.08 reciprocal lattice units and room-temperature velocity v = (1.065 ± 0.12) × 105 m s−1 that undergoes a 31% renormalization upon cooling to 30 K because of coupling to the particle–hole continuum. The momentum dependence of the intensity of the demon confirms its neutral character. Our study confirms a 67-year old prediction and indicates that demons may be a pervasive feature of multiband metals.
AB - The characteristic excitation of a metal is its plasmon, which is a quantized collective oscillation of its electron density. In 1956, David Pines predicted that a distinct type of plasmon, dubbed a ‘demon’, could exist in three-dimensional (3D) metals containing more than one species of charge carrier1. Consisting of out-of-phase movement of electrons in different bands, demons are acoustic, electrically neutral and do not couple to light, so have never been detected in an equilibrium, 3D metal. Nevertheless, demons are believed to be critical for diverse phenomena including phase transitions in mixed-valence semimetals2, optical properties of metal nanoparticles3, soundarons in Weyl semimetals4 and high-temperature superconductivity in, for example, metal hydrides3,5–7. Here, we present evidence for a demon in Sr2RuO4 from momentum-resolved electron energy-loss spectroscopy. Formed of electrons in the β and γ bands, the demon is gapless with critical momentum q c = 0.08 reciprocal lattice units and room-temperature velocity v = (1.065 ± 0.12) × 105 m s−1 that undergoes a 31% renormalization upon cooling to 30 K because of coupling to the particle–hole continuum. The momentum dependence of the intensity of the demon confirms its neutral character. Our study confirms a 67-year old prediction and indicates that demons may be a pervasive feature of multiband metals.
UR - http://www.scopus.com/inward/record.url?scp=85167349544&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85167349544&partnerID=8YFLogxK
U2 - 10.1038/s41586-023-06318-8
DO - 10.1038/s41586-023-06318-8
M3 - Article
C2 - 37558882
AN - SCOPUS:85167349544
SN - 0028-0836
VL - 621
SP - 66
EP - 70
JO - Nature
JF - Nature
IS - 7977
ER -