Planning representations and algorithms for prehensile multi-arm manipulation

Andrew Dobson, Kostas E. Bekris

Research output: Chapter in Book/Report/Conference proceedingConference contribution

15 Scopus citations

Abstract

This paper describes the topology of general multi-arm prehensile manipulation. Reasonable assumptions are applied to reduce the number of manipulation modes, which results in an explicit graphical representation for multi-arm manipulation that is computationally manageable to store and search for solution paths. In this context, it is also possible to take advantage of preprocessing steps to significantly speed up online query resolution. The approach is evaluated in simulation for multiple arms showing it is possible to quickly compute multi-arm manipulation paths of high-quality on the fly.

Original languageEnglish (US)
Title of host publicationIROS Hamburg 2015 - Conference Digest
Subtitle of host publicationIEEE/RSJ International Conference on Intelligent Robots and Systems
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages6381-6386
Number of pages6
ISBN (Electronic)9781479999941
DOIs
StatePublished - Dec 11 2015
EventIEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2015 - Hamburg, Germany
Duration: Sep 28 2015Oct 2 2015

Publication series

NameIEEE International Conference on Intelligent Robots and Systems
Volume2015-December
ISSN (Print)2153-0858
ISSN (Electronic)2153-0866

Other

OtherIEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2015
Country/TerritoryGermany
CityHamburg
Period9/28/1510/2/15

All Science Journal Classification (ASJC) codes

  • Control and Systems Engineering
  • Software
  • Computer Vision and Pattern Recognition
  • Computer Science Applications

Fingerprint

Dive into the research topics of 'Planning representations and algorithms for prehensile multi-arm manipulation'. Together they form a unique fingerprint.

Cite this