POLE ALLOCATION USING MATRIX PERTURBATIONS.

Research output: Contribution to journalConference article

1 Scopus citations

Abstract

An approach is presented for the analysis and design of controllers and observers for high-dimensional systems using pole allocation and matrix perturbation theory. The development of a feedback control law that leads to a desired closed-loop configuration is a prohibitive task computationally, especially for large-order systems. Existing pole allocation algorithms can handle only low-order models. Matrix perturbation theory is used to provide an estimate of the system eigensolution, which is consequently used to analyze and design the closed-loop controller. The accuracy of the control (or observer) design depends on how small a perturbation the controls (or observer gains) are on the uncontrolled system, and it is assessed qualitatively by considering Gerschgorin's disks and the system eigensolution.

Original languageEnglish (US)
Pages (from-to)2070-2076
Number of pages7
JournalProceedings of the American Control Conference
DOIs
StatePublished - 1986

All Science Journal Classification (ASJC) codes

  • Electrical and Electronic Engineering

Fingerprint Dive into the research topics of 'POLE ALLOCATION USING MATRIX PERTURBATIONS.'. Together they form a unique fingerprint.

  • Cite this