Poly(A)-specific ribonuclease (PARN-1) function in stage-specific mRNA turnover in Trypanosoma brucei

Christopher J. Utter, Stacey A. Garcia, Joseph Milone, Vivian Bellofatto

Research output: Contribution to journalArticlepeer-review

18 Scopus citations

Abstract

Deadenylation is often the rate-limiting event in regulating the turnover of cellular mRNAs in eukaryotes. Removal of the poly(A) tail initiates mRNA degradation by one of several decay pathways, including deadenylation- dependent decapping, followed by 5′ to 3′ exonuclease decay or 3′ to 5′ exosome-mediated decay. In trypanosomatids, mRNA degradation is important in controlling the expression of differentially expressed genes. Genomic annotation studies have revealed several potential deadenylases. Poly(A)-specific RNase (PARN) is a key deadenylase involved in regulating gene expression in mammals, Xenopus oocytes, and higher plants. Trypanosomatids possess three different PARN genes, PARN-1, -2, and -3, each of which is expressed at the mRNA level in two life-cycle stages of the human parasite Trypanosoma brucei. Here we show that T. brucei PARN-1 is an active deadenylase. To determine the role of PARN-1 on mRNA stability in vivo, we overexpressed this protein and analyzed perturbations in mRNA steady-state levels as well as mRNA half-life. Interestingly, a subset of mRNAs was affected, including a family of mRNAs that encode stage-specific coat proteins. These data suggest that PARN-1 functions in stage-specific protein production.

Original languageEnglish (US)
Pages (from-to)1230-1240
Number of pages11
JournalEukaryotic Cell
Volume10
Issue number9
DOIs
StatePublished - Sep 2011

All Science Journal Classification (ASJC) codes

  • Microbiology
  • Molecular Biology

Fingerprint

Dive into the research topics of 'Poly(A)-specific ribonuclease (PARN-1) function in stage-specific mRNA turnover in Trypanosoma brucei'. Together they form a unique fingerprint.

Cite this