Post-Print Physical Vetting of 3D Prints with Minimal Embedded Nano-Material Assessor

Saman Aliari Zonouz (Inventor), Mehdi Javanmard (Inventor), Abdul Beyah (Inventor), Luis Garcia (Inventor), Tuan-Anh Le (Inventor), Christopher Bayens (Inventor)

Research output: Innovation


Overview of the Model System Invention Summary: 3D printing has become highly desirable in industrial manufacturing and biomedical applications. Outsourcing the manufacturing to a 3D printing facility leaves the user without access to the printers and a lack of physical verification to determine whether small defects, invisible to the naked eye, have been inserted. Like other automated systems, there is a need for safety parameters and end-user verification. Researchers at Rutgers University and Georgia Tech developed a method for physical verification of 3D printed structures. This method allows for real-time detection and post-production verification of erroneous prints using three methods 1) spectroscopic validation via a user-defined nano-material based barcoded filament, 2) acoustic validation via recorded audio generated by the printer and compared to a reference, and 3) gyroscopic replication via a recorded trajectory followed by the printer head and compared to a reference. The techniques verify the position and notify the user if a cyber-physical attack has occurred. Market Applications: Medical devices and implants Additive manufacturing industry Industrial cyber-physical security Automobile manufacturing Advantages: Reliably identifies intrusions End-user verification Real-time controllers Intellectual Property & Development Status: Patent pending. Available for licensing and/or research collaboration. Academic Publication: Bayens, C. et al . See No Evil, Hear No Evil, Feel No Evil, Print No Evil? Malicious Fill Pattern Detection in Additive Manufacturing .  In Proceedings of the 26th USENIX Conference on Security Symposium (SEC'17), Engin Kirda and Thomas Ristenpart (Eds.). USENIX Association, Berkeley, CA, USA, 1181-1198.
Original languageEnglish (US)
StatePublished - Feb 2019


Dive into the research topics of 'Post-Print Physical Vetting of 3D Prints with Minimal Embedded Nano-Material Assessor'. Together they form a unique fingerprint.

Cite this