Potential adverse effects of botanical supplementation in high-fat-fed female mice

Scott Fuller, Yongmei Yu, Tamra Mendoza, David M. Ribnicky, William T. Cefalu, Z. Elizabeth Floyd

Research output: Contribution to journalArticle

Abstract

Background: Insulin resistance underlies metabolic syndrome and is associated with excess adiposity and visceral fat accumulation, which is more frequently observed in males than females. However, in young females, the prevalence of metabolic syndrome is rising, mainly driven by accumulation of abdominal visceral fat. The degree to which sex-related differences could influence the development of insulin resistance remains unclear, and studies of potential therapeutic strategies to combat metabolic syndrome using rodent models have focused predominantly on males. We therefore evaluated the effects of two nutritional supplements derived from botanical sources, an extract of Artemisia dracunculus L. (termed PMI5011) and Momordica charantia (commonly known as bitter melon), on female mice challenged with a high-fat diet in order to determine if dietary intake of these supplements could ameliorate obesity-induced insulin resistance and metabolic inflexibility in skeletal muscle. Methods: Body composition, physical activity and energy expenditure, fatty acid oxidation, insulin signaling, and gene and protein expression of factors controlling lipid metabolism and ectopic lipid accumulation were evaluated in female mice fed a high-fat diet supplemented with either PMI5011 or bitter melon. Statistical significance was assessed by unpaired two-tailed t test and repeated measures ANOVA. Results: PMI5011 supplementation resulted in increased body weight and adiposity, while bitter melon did not induce changes in these parameters. Pyruvate tolerance testing indicated that both supplements increased hepatic glucose production. Both supplements induced a significant suppression in fatty acid oxidation in skeletal muscle homogenates treated with pyruvate, indicating enhanced metabolic flexibility. PMI5011 reduced lipid accumulation in skeletal muscle, while bitter melon induced a downward trend in lipid accumulation in the skeletal muscle and liver. This was accompanied by transcriptional regulation of autophagic genes by bitter melon in the liver. Conclusions: Data from the current study indicates that dietary supplementation with PMI5011 and bitter melon evokes a divergent, and generally less favorable, set of metabolic responses in female mice compared to effects previously observed in males. Our findings underscore the importance of considering sex-related variations in responses to dietary supplementation aimed at combating metabolic syndrome.

Original languageEnglish (US)
Article number01991
JournalBiology of Sex Differences
Volume9
Issue number1
DOIs
StatePublished - Sep 12 2018

All Science Journal Classification (ASJC) codes

  • Gender Studies
  • Endocrinology

Keywords

  • Botanical
  • Insulin
  • Liver
  • Metabolic syndrome
  • Obesity
  • Sex
  • Skeletal muscle

Fingerprint Dive into the research topics of 'Potential adverse effects of botanical supplementation in high-fat-fed female mice'. Together they form a unique fingerprint.

  • Cite this