Prenatal exposure to polycyclic aromatic hydrocarbons and gestational age at birth

Sophia L. Freije, Daniel A. Enquobahrie, Drew B. Day, Christine Loftus, Adam A. Szpiro, Catherine J. Karr, Leonardo Trasande, Linda G. Kahn, Emily Barrett, Kurunthachalam Kannan, Nicole R. Bush, Kaja Z. LeWinn, Shanna Swan, W. Alex Mason, Morgan Robinson, Sheela Sathyanarayana

Research output: Contribution to journalArticlepeer-review

5 Scopus citations

Abstract

Background: Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous chemicals with mechanisms of toxicity that include endocrine disruption. We examined associations of prenatal urinary PAH with spontaneous preterm birth (PTB) and gestational age (GA) at birth. We also assessed whether infant sex modifies the association of PAH exposure with spontaneous PTB and GA at birth. Methods: Participants included 1,677 non-smoking women from three cohorts (CANDLE, TIDES, and GAPPS) in the ECHO PATHWAYS Consortium. Twelve monohydroxylated-PAHs were measured in second trimester maternal urine. Seven metabolites with >60% overall detection were included in analyses: 1-hydroxynaphthalene [1-OH-NAP], 2-hydroxynaphthalene [2-OH-NAP], 2-hydroxyphenanthrene [2-OH-PHEN], 3-hydroxyphenanthrene [3-OH-PHEN], 1/9-hydroxyphenanthrene [1/9-OH-PHEN], 2/3/9-hydroxyfluorene [2/3/9-OH-FLUO], and 1-hydroxypyrene [1-OH-PYR]. Logistic and linear regression models were fit for spontaneous PTB and GA among births ≥34 weeks, respectively, with log10-transformed OH-PAH concentrations as the exposure, adjusted for specific gravity and suspected confounders. Effect modification by infant sex was assessed using interaction terms and marginal estimates. Results: Percent detection was highest for 2-OH-NAP (99.8%) and lowest for 1-OH-PYR (65.2%). Prevalence of spontaneous PTB was 5.5% (N = 92). Ten-fold higher 2-OH-NAP exposure was associated with 1.60-day (95% CI: −2.92, −0.28) earlier GA at birth. Remaining associations in the pooled population were null. Among females, we observed significant inverse associations between 1-OH-PYR and PTB (OR: 2.65 [95% CI: 1.39, 5.05]); and 2-OH-NAP with GA: −2.46 days [95% CI: −4.15, −0.77]). Among males, we observed an inverse association between 2/3/9-OH-FLUO and PTB (OR = 0.40 [95% CI: 0.17,0.98]). ORs for PTB were higher among females than males for 2-OH-PHEN (p = 0.02) and 1-OH-PYR (p = 0.02). Discussion: We observed inverse associations of 2-OH-NAP exposure with GA and null associations of remaining OH-PAHs with GA and PTB. Females may be more susceptible to spontaneous PTB or shorter GA following prenatal exposure to some OH-PAHs. This study is the first to assess sex-specific OH-PAH toxicity in relation to spontaneous PTB and GA.

Original languageEnglish (US)
Article number107246
JournalEnvironment international
Volume164
DOIs
StatePublished - Jun 2022

All Science Journal Classification (ASJC) codes

  • Environmental Science(all)

Keywords

  • Gestational age
  • Maternal exposure
  • Polycyclic aromatic hydrocarbons (PAH)
  • Preterm birth
  • Sex-specific associations

Fingerprint

Dive into the research topics of 'Prenatal exposure to polycyclic aromatic hydrocarbons and gestational age at birth'. Together they form a unique fingerprint.

Cite this