Probes of turbulent driving mechanisms in molecular clouds from fluctuations in synchrotron intensity

C. A. Herron, C. Federrath, B. M. Gaensler, G. F. Lewis, N. M. McClure-Griffiths, Blakesley Burkhart

Research output: Contribution to journalArticlepeer-review

13 Scopus citations


Previous studies have shown that star formation depends on the driving of molecular cloud turbulence, and differences in the driving can produce an order of magnitude difference in the star formation rate. The turbulent driving is characterized by the parameter ζ, with ζ = 0 for compressive, curl-free driving (e.g. accretion or supernova explosions), and ζ = 1 for solenoidal, divergence-free driving (e.g. Galactic shear). Here we develop a new method to measure ζ from observations of synchrotron emission from molecular clouds. We calculate statistics of mock synchrotron intensity images produced from magnetohydrodynamic simulations of molecular clouds, in which the driving was controlled to produce different values of ζ. We find that the mean and standard deviation of the log-normalized synchrotron intensity are sensitive to ζ, for values of ζ between 0 (curl-free driving) and 0.5 (naturally mixed driving). We quantify the dependence of zeta on the direction of the magnetic field relative to the line of sight. We provide best-fitting formulae for ζ in terms of the log-normalized mean and standard deviation of synchrotron intensity, with which ζ can be determined for molecular clouds that have similar Alfvénic Mach number to our simulations. These formulae are independent of the sonic Mach number. Signal-to-noise ratios larger than 5, and angular resolutions smaller than 5 per cent of the cloud diameter, are required to apply these formulae. Although there are no firm detections of synchrotron emission from molecular clouds, by combining Green Bank Telescope and Very Large Array observations it should be possible to detect synchrotron emission from molecular clouds, thereby constraining the value of ζ.

Original languageEnglish (US)
Pages (from-to)2272-2283
Number of pages12
JournalMonthly Notices of the Royal Astronomical Society
Issue number2
StatePublished - Apr 1 2017
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Astronomy and Astrophysics
  • Space and Planetary Science


  • ISM: structure
  • MHD
  • Magnetic fields
  • Methods: data analysis
  • Turbulence


Dive into the research topics of 'Probes of turbulent driving mechanisms in molecular clouds from fluctuations in synchrotron intensity'. Together they form a unique fingerprint.

Cite this