Production of an Attenuated Phenol-Soluble Modulin Variant Unique to the MRSA Clonal Complex 30 Increases Severity of Bloodstream Infection

Gordon Y.C. Cheung, Dorothee Kretschmer, Anthony C. Duong, Anthony J. Yeh, Trung V. Ho, Yan Chen, Hwang Soo Joo, Barry N. Kreiswirth, Andreas Peschel, Michael Otto

Research output: Contribution to journalArticlepeer-review

31 Scopus citations

Abstract

Methicillin-resistant Staphylococcus aureus (MRSA) is a leading cause of morbidity and death. Phenol-soluble modulins (PSMs) are recently-discovered toxins with a key impact on the development of Staphylococcus aureus infections. Allelic variants of PSMs and their potential impact on pathogen success during infection have not yet been described. Here we show that the clonal complex (CC) 30 lineage, a major cause of hospital-associated sepsis and hematogenous complications, expresses an allelic variant of the PSMα3 peptide. We found that this variant, PSMα3N22Y, is characteristic of CC30 strains and has significantly reduced cytolytic and pro-inflammatory potential. Notably, CC30 strains showed reduced cytolytic and chemotactic potential toward human neutrophils, and increased hematogenous seeding in a bacteremia model, compared to strains in which the genome was altered to express non-CC30 PSMα3. Our findings describe a molecular mechanism contributing to attenuated pro-inflammatory potential in a main MRSA lineage. They suggest that reduced pathogen recognition via PSMs allows the bacteria to evade elimination by innate host defenses during bloodstream infections. Furthermore, they underscore the role of point mutations in key S. aureus toxin genes in that adaptation and the pivotal importance PSMs have in defining key S. aureus immune evasion and virulence mechanisms.

Original languageEnglish (US)
Article numbere1004298
JournalPLoS pathogens
Volume10
Issue number8
DOIs
StatePublished - Aug 21 2014

All Science Journal Classification (ASJC) codes

  • Parasitology
  • Microbiology
  • Immunology
  • Molecular Biology
  • Genetics
  • Virology

Fingerprint Dive into the research topics of 'Production of an Attenuated Phenol-Soluble Modulin Variant Unique to the MRSA Clonal Complex 30 Increases Severity of Bloodstream Infection'. Together they form a unique fingerprint.

Cite this