Pro‐subtilisin E: purification and characterization of its autoprocessing to active subtilisin E in vitro

Y. Ohta, M. Inouye

Research output: Contribution to journalArticlepeer-review

35 Scopus citations

Abstract

The formation of active subtilisin E from pro‐subtilisin E requires the removal of the N‐terminal pro‐sequence of 77 residues. Pro‐subtilisin E produced in Escherichia coli using a pINIII‐ompA vector was first extracted with 6M guanidine‐HCl and 5M urea and purified to homogeneity in the presence of 5M urea. Upon drop dialysis against 0.2M sodium phosphate buffer (pH 6.2), the purified pro‐subtilisin in 5M urea was processed to active subtilisin of which the N‐terminal sequence and migration in SDS‐polyacrylamide gel electrophoresis were identical to those of authentic active subtilisin E. This process was found to be very sensitive to the ionic strengths and anions used. Under the optimum conditions (dialysis against 0.5 M (NH4)2SO4 and 1 mM CaCl2 in 10mM Tris‐HCl buffer (pH 7.0) at 4°C for 1 h), approximately 20% of pro‐subtitisin E was converted to active subtilisin E. The activation process was not inhibited by Streptomyces subtilisin inhibitor, and pro‐subtiiisin E in which the active site was mutated (Asp32 to Asn) was unable to be processed under the optimum conditions. These results confirmed the previous hypothesis that the processing of pro‐subtilisin occurs by an intramolecular, autoprocessing mechanism.

Original languageEnglish (US)
Pages (from-to)295-304
Number of pages10
JournalMolecular microbiology
Volume4
Issue number2
DOIs
StatePublished - Feb 1990

All Science Journal Classification (ASJC) codes

  • Microbiology
  • Molecular Biology

Fingerprint

Dive into the research topics of 'Pro‐subtilisin E: purification and characterization of its autoprocessing to active subtilisin E in vitro'. Together they form a unique fingerprint.

Cite this