Abstract
Detection of nitrative stress is crucial to understanding redox signaling and pathophysiology. Dysregulated nitrative stress, which generates high levels of peroxynitrite, can damage lipid membranes and cause activation of proinflammatory pathways associated with pulmonary complications. Here, we present a protocol for implementing a peroxynitrite-sensing phospholipid to investigate nitrative stress in murine cells and lung tissue. We detail procedures for sensing ONOO– in stimulated cells, both ex vivo and in vivo, using murine models of acute lung injury (ALI). For complete details on the use and execution of this protocol, please refer to Gutierrez and Aggarwal et al.1
Original language | English (US) |
---|---|
Article number | 103268 |
Journal | STAR Protocols |
Volume | 5 |
Issue number | 3 |
DOIs | |
State | Published - Sep 20 2024 |
Externally published | Yes |
All Science Journal Classification (ASJC) codes
- General Neuroscience
- General Biochemistry, Genetics and Molecular Biology
- General Immunology and Microbiology
Keywords
- Cell Biology
- Chemistry
- Molecular/Chemical Probes